TABLE OF CONTENTS

Sl. No	Contents	Page No.
1	Preface	01
2	Board of Studies	03
3	Programme Outcomes	05
4	Programme Specific Outcomes	06
5	Scheme of Instructional Cerdits and Hours	07
6	Semester wise Syllabus Index	10
7	Courses which have field visit/Industrial visit/Study tour/Institutional visit	15
8	Courses with Record and Practical	16
9	Syllabus with Course Outcomes, Mode of Evaluation and Assessment - First Semester	17
10	Syllabus with Course Outcomes, Mode of Evaluation and Assessment - Second Semester	28
11	Syllabus with Course Outcomes, Mode of Evaluation and Assessment - Third Semester	36
12	Syllabus with Course Outcomes, Mode of Evaluation and Assessment - Fourth Semester	68
13	Syllabus with Course Outcomes, Mode of Evaluation and Assessment - Fifth Semester	100
14	Syllabus with Course Outcomes, Mode of Evaluation and Assessment - Sixth Semester	135
15	Syllabus with Course Outcomes, Mode of Evaluation and Assessment - Seventh Semester	168
16	Syllabus with Course Outcomes, Mode of Evaluation and Assessment - Eighth Semester	196

PREFACE

Chemistry is a wide-ranging science concerned with matter at the atomic and molecular scale. Important facets are synthesis, structure, microscopic mechanisms, properties, analysis and transformations of all types of materials. Chemists are a constant source of innovation: it is hard to imagine any product introduced in recent times that did not require the creative efforts of a chemist. Chemistry underpins the conceptual framework and methodology of biochemistry and molecular medicine and is at the heart of many major industries.

In Accordance with the implementation of NEP 2020, Government of Kerala and parent University decided to introduce FYUGP in all colleges from the academic year 2024-25 onwards. Taking into account of the recent developments and trends in the educational scenario, the Department of Chemistry, M A College prepared a curriculum based on the objectives of NEP and sustainable development.

Mar Athanasius College, Kothamangalam, in its pursuit of academic excellence was accorded Autonomous status in March 2016. In order to cope with the internationally followed curricula and mode of evaluation, the department was directed to revise the curriculum and syllabi of postgraduate course. The guidelines are provided by the college.

This curriculum is prepared to give sound knowledge and understanding of chemistry to undergraduate students. Salient features of the present syllabus are

- 1) It provides logical sequencing of the units of the subject matter with proper placement of concepts with their linkages for better understanding.
- 2) Emphasis has been on promoting processing skills, problem solving abilities, training in laboratory skills and instrumentation, nurturing curiosity and applications of concepts of chemistry useful in real life situations, making learning of chemistry more relevant and interesting.
- 3) Inculcate the value of honesty, integrity, co-operation, concern for life and preservation of the environment.
- 4) Equip the students to face challenges related to health, nutrition, environment, population, weather, industries and agriculture.

This syllabi is prepared in a participatory manner, after discussions with a number of teachers in the subject and experts from industries and also comparing with the syllabi of other Universities and autonomous colleges. The draft syllabus prepared by the members of the faculty was discussed in detail in meeting of Board of the Studies held on 07-05-2024. Appreciable updating has done in keeping with current developments and trends in Chemistry.

I would like to express my sincere gratitude to all the members of the Board of Studies, especially, Dr. S.Sugunan, Emeritus Professor (Retired),Dr. G Anilkumar, Professor, School of Chemical Sciences, MG University Dr. Mereena B A, Sr. Vice President, Product Development, Arjuna Natural Pvt. Dr, Abraham Joseph, Professor, University of Calicut, Thenjipalam, Dr. Ignatious Abraham, SH College, Thevara (Special Invitee) or their whole hearted time bound help, cooperation and encouragement. I also thank Dr. Jyothi P R, Assistant professor in Chemistry, M.A College Kothamangalam for coordinating and editing the Under Graduate syllabus in Chemistry.

Chairperson and Members Board of Studies of Chemistry (UG) Mar Athanasius College (Autonomous), Kothamangalam

MAR ATHANASIUS COLLEGE (AUTONOMOUS), KOTHAMANGALAM Members of the Board of Studies – B Sc (Honours) Programme Subject : CHEMISTRY

Chairperson	Dr. Annu Anna Varghese,
	Associate Professor & Head,
	Department of Chemistry,
	Mar Athanasius College, Kothamangalam
Experts (2) (Outside University)	Dr. S Sugunan,
	Emeritus Professor (Retd.),
	Cochin University of Science and
	Technology,
	Kochi 22
	E mail: <u>ssg@cusat.ac.in</u>
	Dr. Abraham Joseph,
	Professor,
JANAS	University of Calicut,
	Thenhipalam P O
	E mail: <u>drabrahamj@gmail.com</u>
One Expert - nominated by VC (M. G.	Dr. G. Anilkumar
Uty)	Professor
INLEDO	School of Chemical Sciences, MG
- AND	University, Kottayam
	Email: anilgi1@yahoo.com, <u>anil@mgu.ac.in</u>
Member from Industry	Dr. Merina B.A
	Sr. Vice-President Product Development
	Arjuna Natural Pvt. Ltd, Aluva
	Kerala India 683101
	Email: merina@arjunanatural.com
Meritorious Alumnus	Dr. M.M Joseph,
	Retd. Principal,
	Mar Baselios College, Adimali
	Email: joseph.m.markose@gmail.com
Other Members of the Department	Dr. Manju Kurian,
	Professor and Principal,
	Department of Chemistry,
	Mar Athanasius College, Kothamangalam

		Dr. Binu Varghese,
		Associate Professor,
		Department of Chemistry,
		Mar Athanasius College, Kothamangalam
		Dr. Marymol Moothedan,
		Assistant Professor,
		Department of Chemistry,
		Mar Athanasius College, Kothamangalam
		Dr. Meegle. S Mathew
		Assistant Professor,
		Department of Chemistry,
		Mar Athanasius College, Kothamangalam
Special Invitees	HANAS	Dr. Jyothi. P.R.
		Assistant Professor,
	NAME OF THE OWNER OF	Department of Chemistry,
		Mar Athanasius College, Kothamangalam
	TOTHANA	Dr. Sherin Philip
	NLEDG	Assistant Professor,
	Canal Contraction	Department of Chemistry,
	1210	Mar Athanasius College, Kothamangalam

Programme Outcomes (PO)

PO 1: Critical thinking and Analytical reasoning

Capability to analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories to develop knowledge and understanding; critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society.

PO 2: Scientific reasoning and Problem solving

Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations.

PO 3: Multidisciplinary/interdisciplinary/transdisciplinary Approach

Acquire interdisciplinary /multidisciplinary/transdisciplinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative-multidisciplinary/interdisciplinary/transdisciplinary- approach for formulate constructive arguments and rational analysis for achieving common goals and objectives.

PO 4: Communication Skills

Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.

PO 5: Leadership and Entrepreneurship Skills

Ability to work effectively and lead respectfully with diverse teams; setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way. After inculcating all the necessary graduate qualities, a graduate can become an entrepreneur.

PO 6: Social Consciousness and Responsibility

Ability to contemplate the impact of research findings on conventional practices, and a clear understanding of responsibility towards societal needs and reaching the targets for attaining inclusive and sustainable development.

PO 7: Equity, Inclusiveness and Sustainability

Appreciate equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity, secularism and national integration to enable to act as dignified citizens; able to understand and appreciate diversity (caste, ethnicity, gender and marginalization), managing diversity and use of an inclusive approach to the extent possible.

PO 8: Moral and Ethical Reasoning

Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behaviour.

PO 9: Networking and Collaboration

Acquire skills to be able to collaborate and network with educational institutions, research organisations and industrial units in India and abroad.

PO 10: Lifelong Learning

Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO No.	Upon completion of BSc Chemistry programme, the students	PO No.
	will be able to:	
PSO-1	Acquire a comprehensive knowledge, understanding of the major	1,2,7,10
	areas of inorganic, organic, theoretical, and physical chemistry	
	including a wide range of other disciplinary subjects such as	
	analytical, bio- and industrial chemistry with specialisation in	
	materials science and natural products chemistry.	
PSO-2	Interpret chemical information verbally, mathematically and	2,7
	graphically.	
PSO-3	Develop a sense of inquiry and problem-solving ability to pursue	1,2,10
	higher studies and research and succeed in competitive	
	examinations.	
PSO-4	Achieve laboratory skills needed to design safe, eco-friendly and	1,2,5,7,10
	novel chemical experiments to succeed in graduate and	
	professional school, chemical industry and research, chemical	
	simulations and data analysis.	
PSO-5	Illustrate environmental issues and human rights for generating a	6,7,8,10
	novel society.	
PSO-6	Demonstrate writing, speaking, reading and listening competence	4
	in different languages.	

B.SC. (HONOURS) CHEMISTRY

Semester	Type	Course Title	Cr	Credits		Total
	Course		Theory	Practical	per week	Semester
	DSC	Fundamentals of Chemistry-1	3	1	5	90
1	MDC	Environmental chemistry	2	1	4	72
	DSC	Fundamentals of Chemistry-2	3	1	5	90
2	MDC	Chemistry in Everyday life	2	1	4	60
	DSC	Inorganic Chemistry -1	3	1	5	90
	DSC	Organic Chemistry -1	4	-	4	72
	DSE	Chemistry of natural Any products One	3	1	5	90
	DSE	Food Chemistry	3	1	5	90
3	MDC	Food Chemistry and Nutrition	2	1	4	72
	VAC	Forensic Chemistry	3		3	54
	DSC (B)	Chemistry Minor -1: Inorgani and Organic Chemistry ((Fo students who have opted Lif Sciences, and Family & Community Science as core)	c 3 r če že	1	5	90
	DSC	Organic Chemistry -2	3	1	5	90
	DSC	Physical Chemistry -1	3	1	5	90
	DSE	Chemistry of Any Two materials	4	-	4	72
4	DSE	Medicinal Chemistry	4	-	4	72
-	SEC	Chemistry in daily life	3	-	3	54
	VAC	Environmental Chemistry	3	-	3	54
	DSC (C)	Chemistry Minor -2: Physica Chemistry (For students wh have opted Physical Sciences an Geology as Main)	l 3 o d	1	5	90
		Internship		2		
	DSC	Physical Chemistry 2	3	1	5	90

SCHEME OF INSTRUCTIONAL CREDITS AND HOURS

	DSC	Organic chemistry 3		4	-	4	72
	DSC	Environmental chemistry a Human rights	and	4	-	4	72
	DSE	Fats, Oils and Waxes	Any two	4	-	4	72
	DSE	Instrumental methods and spectroscopy		4	-	4	72
	DSE	Polymer chemistry		4	-	4	72
	DSE	Industrial Chemistry		4	-	4	72
	SEC	Analytical Chemistry and Professional skills	3	-	3	54	
	DSC	Inorganic Chemistry -2	(3	1	5	90
	DSC	Physical Chemistry -3	25	3	1	5	90
	DSE	Chemistry of Aromatics an Essential oils	4	(4	72	
	DSE	Nanoscience and Nanotechn	ology	4	-	4	72
6	DSE	Nanotechnology for energy Applications	4		4	72	
	DSE	Biochemistry	4	-	4	72	
	SEC	Diary Chemistry	3	-	3	54	
	VAC	Research Methodology for Chemistry	3	-	3	54	
	DCC	Coordination and Organometallic Chemistry	[,] 1	4	-	4	72
	DCC	Organic Chemistry -4		4	-	4	72
	DCC	Physical Chemistry-4		4	-	4	72
7	DCE	Molecular Spectroscopy in Structural Analysis		4	-	4	72
	DCE	Organic Chemistry-5		4	-	4	72
	DCE	Quantum mechanics and Gro	oup	4	-	4	72

		theory				
8	DCC	Coordination and Organometallics Chemistry II	3	1	5	90
	DCC	Instrumental Methods of Chemical Analysis	3	1	5	90
	DCE	Computational chemistry and Molecular Modelling	3	1	5	90
	DCE	Crystallography and Electrochemistry	3	1	5	90
	DCE	Advanced Organic Chemistry	3	1	5	90
	Research Project		12/8	(

Syllabus Index: Chemistry Major Specialization1- Natural Products Chemistry Specialisation 2- Materials Chemistry

Semester 1

Course Code	Title of the Course	Type of the Course	Credit	Hours/ week	Hour Distributio /week		tion	
					L	Т	Р	0
M24CH1DSC100	Fundamentals of Chemistry-1	DSC	4	5	3	0	2	0
M24CH1MDC100	Environmental chemistry	MDC	3	4	2	0	2	0

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others

	JANA	SIUSCO	-7						
Course Code	Title of the Course	Type of the Course	ype of the ourse		Credit Hours/ week		/ Hour Distribution /week		on
	TOTHAM	ANGALAN	1		L	Т	Р	0	
M24CH2DSC100	Fundamentals of Chemistry-2	DSC	4	5	3	0	2	0	
M24CH2MDC100	Chemistry in Everyday life	MDC	3	4	2	0	2	0	

Semester: 2

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others

Course Code	Title of the Course	Type of the Course	Credit	Hours/ week	Hour Distribut /week		our butic eek	on
					L	Т	Р	0

M24CH3DSC200	Inorganic Chemistry -1		DSC	4	5	3	0	2	0
M24CH3DSC201	Organic Chemistry -1		DSC	4	4	4	0	0	0
M24CH3DSE200	Chemistry of natural products (S1)	Any One	DSE	4	5	3	0	2	0
M24CH3DSE201	Food Chemistry		DSE						
M24CH3MDC200	Food Chemistry and Nutrition		MDC	3	3	3	0	0	0
M24CH3VAC200	Forensic Chemistry		VAC	3	3	3	0	0	0
M24CH3DSC202	Inorganic and Organic Chemistry		DSC B	4	5	3	0	2	0

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others, S1- Specialisation 1

Course Code	Title of the Course	Title of the Course Ty		Credit	Hours/ week		H Distri /w	our ibutio eek	on
	Anount C	- During	S POWE	5		L	Т	Р	0
M24CH4DSC200	Drganic Chemistry -2		DSC	4	5	3	0	2	0
M24CH4DSC201	Physical Chemistry -1		DSC	4	5	3	0	2	0
M24CH4DSE200	Chemistry of materials (S2)	Any One	DSE	4	4	4	0	0	0
M24CH4DSE201	Medicinal chemistry		DSE						
M24CH4SEC200	Chemistry in daily life		SEC	3	3	3	0	0	0
M24CH4VAC200	Environmental Chemistry		VAC	3	3	3	0	0	0
M24CH4DSC202	Physical Chemistry		DSC C	4	5	3	0	2	0
M24CH4INT200	Internship			2					

Semester: 4

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others, S2- Specialisation 2

		Sem	ester: 5						
Course Code	Title of the Cou	Title of the Course		Credit	Hours/ week	Hour Distributi /week		our ibutio reek	on
						L	Т	Р	0
M24CH5DSC300	Physical Chemistry 2		DSC	4	5	3	0	2	0
M24CH5DSC301	Organic chemistry 3		DSC	4	5	3	0	2	0
M24CH5DSC302	Environmental Chemistry and Human Rights		DSC	4	4	4	0	0	0
M24CH5DSE300	Fats, Oils and Waxes (S1)	ANASI	DSE	4	4	4	0	0	0
M24CH5DSE301	Instrumental methods and spectroscopy(S2)	Any Two	LEGE		1				
M24CH5DSE302	Polymer chemistry	HAMA	DSE	4	4	4	0	0	0
M24CH5DSE303	Industrial Inorganic Chemistry and Nuclear Chemistry	EDOR	DSE						
M24CH5SEC300	Analytical Chemistr Professional Skills	y and	SEC	3	4	2	0	2	0

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others, S1- Specialisation 1, S2- Specialisation 2

Semester: 6										
Course Code	Title of the Course	Type of the Course	Credit	Hours/ week]	H Distri /w	our ibutic eek	on		
					L	Т	Р	0		

M24CH6DSC300	Inorganic Chemistry -2		DSC	4	5	3	0	2	0
M24CH6DSC301	Physical Chemistry -3		DSC	4	5	3	0	2	0
M24CH6DSE300	Chemistry of Aromatics and Essential oils (S1)	Any Two	DSE	4	4	4	0	0	0
M24CH6DSE301	Nanoscience and Nanotechnology (S2)								
M24CH6DSE302	Nanotechnology for energy Applications		DSE	4	4	4	0	0	0
M24CH6DSE303	Biochemistry	NASI	15	T					
M24CH6SEC300	Diary Chemistry	+	SEC	3	3	3	0	0	0
M24CH6VAC300	Research Methodolo Chemistry	gy for	VAC	3	3	3	0	0	0

, L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others, S1- Specialisation 1, S2-Specialisation 2

Semester: 7										
Course Code	Title of the Course	Type of the Course	Credit	Hours/ week		Hour Distribution /week		on		
					L	Т	Р	0		

M24CH7DCC400	Coordination and Organometallic Chemistry 1	DCC	4	5	4	0	0	0
M24CH7DCC401	Organic Chemistry-4	DCC	4	4	4	0	0	0
M24CH7DCC402	Physical Chemistry-4	DCC	4	4	4	0	0	0
M24CH7DCE400	Molecular Spectroscopy in Structural Analysis	DCE	4	4	4	0	0	0
M24CH7DCE401	Organic Chemistry-5	DCE	4	4	4	0	0	0
M24CH7DCE402	Quantum mechanics and Group theory	DCE	4	4	4	0	0	0

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others

Semester: 8										
Course Code	Title of the Course	Type of the Course	Credit	Hours/ week	Hour Distribution /week					
		Course		-	L	Т	Р	0		
M24CH8DCC400	Coordination and Organometallics Chemistry II	DCC	4	5	3	0	2	0		
M24CH8DCC401	Instrumental Methods of Chemical Analysis	DCC	4	5	3	0	2	0		
M24CH8DCE400	Computational chemistry and Molecular Modelling	DCE	4	5	3	0	2	0		
M24CH8DCE401	Crystallography and Electrochemistry	DCE	4	5	3	0	2	0		
M24CH8DCE402	Advanced Organic Chemistry	DCE	4	5	3	0	2	0		
M24PH8PRJ400	Project* (UG Degree-Honours	8	2DCC+ Project (DCC+ 1 DSC/DCE + roject OR 2 DCE						
M24PH8PRJ401	Project*(UG Degree - Honours Research)	s with	12	2 DCC -	- Proje	ect				

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others <u>Courses with Industrial visit/Institutional Visit</u>

Semester	Туре	Course Title	Activity

	of Course		
2	MDC	Chemistry in Everyday life	Industry visit
3	DSE	Chemistry of natural products	Industry visit
3	DSE	Food Chemistry	Industry visit
4	DSE	Chemistry of materials	Institutional Visit
4	SEC	Chemistry in daily life	Industry visit
4	VAC	Environmental Chemistry	Institutional Visit
5	DSE	Fats, Oils and Waxes	Industry visit
5	DSE	Instrumental methods and spectroscopy	Institutional Visit
6	DSE	Chemistry of Aromatics and Essential oils	Industry visit
6	DSE	Analytical Chemistry and Professional skills	Institutional Visit
6	DSE	Nanoscience and Nanotechnology	Institutional Visit
6	SEC	Analytical Chemistry and Professional skills	Institutional Visit
7	DCE	Molecular Spectroscopy in Structural Analysis	Institutional Visit
8	DCC	Instrumental Methods of Chemical Analysis	Institutional Visit
8	DCE	Computational chemistry and Molecular Modelling	Institutional Visit
Sl. No.	Semester	r Course Type	Course Title

COURSES WITH PRACTICALS AND RECORDS

1	1	DSC	Fundamentals of Chemistry 1
2	1	MDC	Environmental Chemistry
3	2	DSC	Fundamentals of Chemistry 2
4	2	MDC	Chemistry in Everyday Life
5	3	DSC	Inorganic Chemistry -1
6	3	DSE	Chemistry of natural products
7	3	DSC B	Inorganic and Organic Chemistry
8	4	DSC	Organic Chemistry -2
9	4	DSC	Physical Chemistry -1
10	4	DSC C	Physical Chemistry
11	5	DSC	Physical Chemistry 2
12	5	DSC	Organic chemistry 3
13	5	SEC	Analytical Chemistry and Professional skills
14	6	DSC	Inorganic Chemistry -2
15	6	DSC	Physical Chemistry -3
16	8	DCC	Coordination and Organometallics Chemistry II
17	8	DCC	Instrumental Methods of Chemical Analysis
18	8	DCE	Computational chemistry and Molecular Modelling
19	8	DCE	Crystallography and Electrochemistry
20	8	DCE	Advanced Organic Chemistry

	Mar Athai	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme /Discipline	B.Sc. CHEMI	ISTRY (Hono	ours)					
Course Name	Fundamental	Fundamentals of Chemistry-1						
Type of Course	Foundation C	Foundation Course (DSC)						
Course Code	M24CH1DSC	M24CH1DSC100						
Course Level	100-199	100-199						
Course Summary	The fundament concepts of at analytical cher table to und Fundamental of and principle techniques.	tals of chemis oms, elements mistry. Studen derstand the concepts of A s essential fo	try-1 course , compounds ts explore ato foundation nalytical Ch or chemical	covers the b , and fundation omic structu of chemi emistry intri analysis, i	asic princ mental con re and the nical inte roduces te including	iples and ncepts of periodic rractions. chniques titration		
Semester	1		Credits)	4	Total Hours		
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others			
		3		1		75		
Pre-requisites, if any	Atomic model	s (J.J. Thomso	on model and	Rutherford	model)			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Apply atomic models to forecast and explain electronic configurations, atomic behaviour, and characteristics.	А	1,2
2	Describe the fundamental concepts in analytical chemistry.	U	1,2,3
3	Apply principles of analytical chemistry to solve quantitative titrimetric problems.	A	1,2,4
4	Analyse periodic trends, the relationship between electronic configuration and the chemical reactivity of elements, including the formation of chemical bonds.	An	1,2,4
5	Detect metals in flame and spot tests, chloride in water, and lead in food samples; quantify oxidants and reductants through titration.	A, S	1,2,4
*Remen (S), Inte	aber (K), Understand (U), Apply (A), Analyse (An), Evaluate erest (I) and Appreciation (Ap)	e (E), Create (C), S	Skill

COURSE CONTENT

Module	Units	Units Course description			
			1		
	1.1	Introduction to Bohr atom model, Atomic spectrum of hydrogen and hydrogen like atoms, Explanation using Bohr atom model, limitations of Bohr atom model	4	1	
	1.2	Dual nature of matter, de Broglie equation, Heisenberg's Uncertainty Principle and its significance.	2	1	
1. Atomic Structure	1.3	Concept of orbit and orbital. Shapes of s, p and d orbitals.	2	1	
	1.4	Quantum numbers and their significance	2	1	
	1.5	Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau principle.	2	1	
	1.6	Electronic configuration of atoms (Up to atomic number 30). Stability of half-filled and fully filled electronic configurations.	3	1	
2. Fundamental Concepts of Analytical Concepts of Concepts of Co		Methods of expressing concentration- normality, molality, molarity, mole fraction, weight percentage,	2	2	
Chemistry	ppm and ppb				
		Theory of volumetric analysis- Primary and			
	2.2	secondary standards, criteria for primary standards, preparation of standard solutions, standardization of solutions, end point, quantitative dilution - problems	3	2,3	

Content for Classroom transaction (Units)

	2.3	Precision and accuracy, ways of expressing precision- types of errors, methods to reduce systematic errors, mean and standard deviation, distribution of random errors, Linear least square method	4	2
	2.4	Acid-base titrations- Strong acid - Strong base, Strong acid - Weak base, Weak acid - Strong base, Weak acid - Weak base -titration curves- Ostwald's theory of acid- base indicators- Double burette method of titration, Introduction of microscale experiments and its advantages	6	2,3
		SANASIUS EL		
3 Periodic Table and Periodic Properties	3.1	Modern periodic law – Long form of periodic table. Classification of elements as s,p,d & f block, Classification- Metal, Non-metals & metalloids.	3	4
	3.2	Diagonal relationship and anomalous behaviour of first element in a group	1	4
	3.3	Periodicity in properties: Atomic and ionic radii - ionization enthalpy - electron affinity (electron gain enthalpy) –electronegativity. Electronegativity scales: Pauling and Mullikan scales	6	4
	3.4	Effective nuclear charge – Slater rule and its applications	2	4
	3.5	Valency and oxidation state with examples	1	4
	3.6	Introduction to chemical bonding- Types of bonds, Ionic bond, covalent bond, coordinate bond	2	4
		Foundation Course 1 Practical		

	1. Demonstration of atomic models using softwares (Non-							
	evaluative)							
	2. Flame tests of Sodium, Potassium, Calcium, Barium and							
	Strontium ions.							
	3. Spot test of Nickel, Zinc and Copper.							
	4. Chloride ion detection in well water and tap water.							
	5. Detection of Lead in food samples.							
	6. Calibration of apparatus- Standard flask and prepare standard molar							
	solutions of any two primary standards.							
	7. Acid- base titration- Acidimetry and Alkalimetry: Titration of Strong							
	acid Vs. Strong base, Strong acid Vs. Weak base, Weak acid							
	Vs. Strong base,							
5.	Teacher specific Contents (To be evaluated internally)							
Teaching and Learning Approach	Lecture Sessions, Interactive Sessions including discussions, demonstrations, and experiments to engage students actively and visual aids like presentations, videos, and models to enhance understanding. Encourage students to ask questions during or after the lectures. Begin with safety instructions and guidelines for lab work. Allow students to conduct experiments under supervision (for lab work).							

MODE OF ASSESSMENT

5

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$ marks
* *	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

References

- 1. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Vikas Publishing Co. Jalandhar, 2013.
- 2. J. D. Lee, Concise Inorganic Chemistry, 5th Edition, Chapman & Hall, 2009.
- 3. P. W. Atkins and J. de Paula, Physical Chemistry, 11th Edition, Oxford University Press, 2018.
- F. A. Cotton, G. Wilkinson and P. L. Gaus, Basic Inorganic Chemistry, 3rd edn., John Wiley, 2007.
- D. F. Shriver and P. W. Atkins, Inorganic Chemistry, 4th edn., Oxford University Press, 2006.
- D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, Fundamentals of Analytical Chemistry, 8th Edition, Brooks/Cole, Thomson Learning, Inc., USA, 2004.
- M. C. Day and J. Selbin, Theoretical Inorganic Chemistry, East West Press, New Delhi, 2002.
- 8. Vogels Textbook of Quantitative Chemical Analysis, 6th Edn. Pearson Education Ltd.
- 9. F. P. Miller, A. F. Vandome, McB. John, Flame Test, VDM Publishing, 2010.

SUGGESTED READINGS

- 1. J.E. Huheey, E.A. Keitler and R.L. Keitler, Inorganic Chemistry–Principles of Structur and Reactivity, 4thEdition, Pearson Education, New Delhi, 2013.
- Satya Prakash, Advanced Inorganic Chemistry, Volume 1, 5th Edition, S. Chand and Sons, New Delhi, 2012.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme/	B.Sc. CHEMISTRY (Honours)

Discipline								
Course Name	Environmental Chemistry							
Type of Course	Multidisciplinary Cours	Multidisciplinary Course (MDC)						
Course Code	M24CH1MDC100							
Course Level	100-199							
Course Summary	Environmental Chemistry examines the sources, behaviour, and effects of pollutants in air and water. The course emphasises strategies for monitoring, mitigating, and preventing environmental degradation and emission of greenhouse gases. The practical focus on the different tests for qualitative analysis of water. Overall, the course aims to foster an understanding of the interplay between chemistry and the environment, enabling the development of sustainable solutions for a cleaner world							
Semester	1 Credits 3							
Course Details	Learning ApproachLectureTutorialPracticalOthersHours2160							
Pre-requisites, if any								

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PSO No				
1	Understand different types air pollutants and effect of air pollutants and methods to monitor and control air pollution	U, K	5				
2	Describe sources of water pollution and methods to control it	U, K	1,3				
3	Discuss various water quality parameters.	An, S	1, 5				
	Understand and apply Solid waste Management and						
4	Significance of 3R - Reduce, Reuse and Recycling	U, K	1,5				
5	Skill to test for water quality monitoring	A, U, S	4,5				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),							
Interest	(I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction (Units)

Module Units Course description Hu	rs CO No.
--	-----------

1. Air Pollution	1.1	Primary and secondary pollutants, Effects of atmospheric pollution - acid rain, smog; green-house effect, Greenhouse Gases - global warming - Schemes to reduce greenhouse gases- ozone layer depletion, climate change. Concept of carbon neutrality- Life Cycle Assessment (LCA) and carbon neutrality - Carbon footprint.	8	1
	1.2	Air pollutant monitoring methods: Filtration, sedimentation, electrostatic samplers, thermal precipitator. Control measures: Gravitational settling chambers; Fabric filters, cyclone collectors; electrostatic precipitators, zoning; Green Belt.	7	1
2. Water Pollution and Solid Waste management	2.1	Sources of water pollution. Pesticide pollution, Thermal pollution, Methods to control water pollution. Drinking water and effluent water quality standards ,water quality parameters: pH, turbidity, TDS,COD, BOD, DO- Basic idea of waste water purification and disinfection	8	2,3
	2.2	Solid waste Management; Classification of solid wastes (source and type based), solid waste management (SWM), waste characteristics (physical and chemical), health and environmental effects (public health and environmental) E- waste generation Zero waste concept; Significance of 3R - Reduce, Reuse and Recycling	7	4
3. Laboratory tests for water quality monitoring	3.1	Determination of pH and conductivity, Test for acidity and alkalinity, Test for total hardness,	15	5
	3.2	Test for halides, nitrate, ammonia, heavy metals, trace metals, calcium, iron etc., and total solids. Analysis of Gaseous Compounds	15	5

	Teacher Specific Contents
4.	(To be evaluated internally)
Teaching and	Classroom Procedure (Mode of transaction)
Learning	Classroom lecture
Approach	Demonstration and practical training in laboratory

MODE OF ASSESSMENT

End Semester Examination
eory Total = 35 marks, Duration 1 hrs
rt A (Short answer) -10 out of $12 \times 1 = 10$
arks
rt B (Short essay) -3 out of $6 \ge 5 = 15$ marks
rt C (Long essay) -1 out of 2 x 10 = 10
arks
actical Total = 35 marks; Duration- 2 hrs
cord 10 marks, Examination 25 marks

References:

- 1. A. K. De, Environmental Chemistry, New age International (p) ltd.
- 2. G. T. Tyler, Living in the Environment, Tomson Brooke/Cole.
- 3. N. Manivasakam, Physico-chemical examination of water, sewage and industrial effluents, Pragathi prakashan.
- 4. D.Clarson, Soil and water analytical methods, ISBN:81-901483-0-3.
- 5. R. K. Khitoliya, Environmental Pollution Management and Control for sustainable development, S.Chand & Company Ltd.
- B. B. Kebbekus and S. Mitra, Enveronmental chemical analysis, Blacke Academic & Professional.
- S. S.Dara, A Textbook of Environmental chemistry and pollution control, S.Chand & Company Ltd.
- 8. R. A. Malaviya, Environmental Pollution and its control under international law.
- 9. Pramod Singh, Environmental pollution management.
- 10. G. K. Ghosh, Environmental pollution A scientific study.

- 11. Nelson L. Numerow, Industrial water pollution.
- 12. James W. Moore and S.Ramamoorthy, Organic chemicals in natural waters
- 13. Hutzinger, Aquatic pollutants.
- 14. F. Kreith Handbook of Solid waste management, Mc Graw Hill Inc.
- 15. Standard methods for examination of water and waste water, APHA
- 16. Peter O' Neil, Environmental Chemistry, Blackie Academic and Professional, London.
- 17. SP Mishra and S N Pandey, Essential Environmental Studies, Ane Books Pvt. Ltd, New Delhi.
- 18. V K Ahluwalia, Environmental Chemistry, Ane Books Pvt Ltd, New Delhi

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme/ Discipline	B.Sc. CHEM	B.Sc. CHEMISTRY (Honours)					
Course Name	Fundamen	Fundamentals of Chemistry-II					
Type of Course	Foundation	Foundation Course(DSC)					
Course Code	M24CH2D	SC100					
Course Level	100-199						
Course Summary	Fundamenta organic che electron dis involved in carbon com substitution foundationa involved.	Fundamentals of Chemistry-2 Students explores fundamental concepts in organic chemistry, importance of Organic chemistry in day today life and electron displacements in organic chemistry and the reactive intermediates involved in an organic reaction. It also covers fundamental reactions involving carbon compounds, focusing on key mechanisms and types of reactions like substitution, addition, elimination, and polymerisation. These courses provide a foundational understanding of the physical nature of matter and the concepts involved					
Semester	2	15	Credits		4	Total	
	Learning	Lecture	Tutorial	Practical	Others	Hours	
Course Details	Approach	3	\sim	1		75	
Pre requisites, if any		Knowledge about carbon and its compounds					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PSO No.	
1	Describe the relevance of organic chemistry, catenation and hybridization.	А	1	
2	Utilize arrow-pushing mechanisms to illustrate and solve simple chemical reactions involving reactive intermediates.	А	1	
3	Evaluate electron displacement patterns in organic molecules using arrow notation.	Е	1,3	
4	Predict and classify various types of organic reactions based on their mechanisms.	U	1,4	
5	Describe the fundamental principles governing the behaviour of different states of matter.	U	1,4	
6	Compare and contrast the properties of solids, liquids, and gases.	S	1	
*Pamember (K) Understand (U) Apply (A) Analyse (An) Evaluate (E) Create (C) Skill				

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Units	Course description	Hrs	CO No.
1.	1.1	Relevance of organic chemistry in day- to-day life (with 2-3 examples). Carbon: catenation and hybridizations (with examples Ethane, ethene, ethyne)	3	1
Fundamentals of Organic Chemistry (15 Hours)	1.2	Bond fissions: Homolysis and heterolysis with examples, Arrow notations in organic reaction mechanisms. Polarity of bonds (basic concepts)	2	2
	1.3	Electron displacement effects: Inductive effect: Influence of inductive effect in the acidity of carboxylic acids, Electromeric effect, Resonance effect (delocalization, contributing structures, resonance energy and stability) Hyperconjugation.	6	3
	1.4	Reaction intermediates: Formation, structure and stability of carbocations, carbanions, and free radicals	4	2
	2.1	Representation of organic molecules: Projection formula (Fischer, Sawhorse, Flying wedge, Newman and their interconversions)	4	4
2. Introduction to Organic	2.2	Types of reagents: Electrophiles and nucleophiles	3	4
Reactions (15 Hours)	2.3	Addition reactions: Markovnikov's addition, peroxide effect. Elimination reactions: E1 and E2 mechanism. Substitution reactions (SN1, SN2 reactions of alkyl halides only).	8	4
3.	3.1	Matter and its different states (elementary idea only), Intermolecular Forces: dipole-dipole interaction, Dipole-induced dipole interaction and induced dipole-induced dipole interaction, Ion- dipole interaction, Hydrogen bonding: intra and inter molecular hydrogen bonds- effect on physical properties	4	3

States of matter	3.2	Gaseous state: - postulates of Kinetic	4	3			
(15 Hours)	theory, Ideal and real gas behaviour,						
		compressibility factor deviation from					
		ideal behaviour, van der Waals					
		equation.					
	3.3	Liquid state: Properties of liquids:	3	5.6			
		Vapour pressure boiling point Surface		-,-			
	tension Viscosity						
	3.4	1 Solid state: Types of Solids: Crystalling 4 56					
	5.4	solid state. Types of Solids: Crystalline 4 5,0					
		and amorphous solids: Ionic solids: Unit					
		cell, Crystal systems, Bravais lattices.					
		1. Find the pH of different water					
		sources and any two common acids	20	1 4 5			
4.		2 Estimation of Phosphoric acid in	30	1,4,5			
Fundamentals of	4.1	2. Estimation of Thosphorie acid in soft drinks					
Chemistry-2	8	3. Estimation of citric acid in citrus					
Practical (30 Hrs)	15	fruits.					
(50 1115)		4. Determination of viscosity of					
		liquids using Oswald viscometer.					
	1 198	5. Test for unsaturation,					
	Teacher specific Contents						
5.		(To be evaluated internally)					
Teaching and	Classroom Procedure (Mode of transaction)						
Learning Approach	Lecture, Practical, Discussion						

MODE OF ASSESSMENT

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of $6 \ge 20$ marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

References

- J. Mendham, R.C. Denney, J. D. Barnes and M. Thomas, Vogel's Text Book of Quantitative Chemical Analysis, 6th Edition, Pearson Education, Noida, 2013.
- 2. Vogels Textbook of Quantitative Chemical Analysis, 6th Edn., Pearson Education Ltd.
- Morrison, R.T., Boyd, R.N. & Bhattacharjee, S.K. Organic Chemistry, 7th ed., Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2011.

- Graham Solomon, T.W., Fryhle, C.B. & Snyder, S.A. Organic Chemistry, John Wiley & Sons, 2014.
- 5. Bahl, A. & Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010.
- 6. J.Clayden, N.Greeves, S. Warren, P.Wothers, Organic Chemistry, Oxford University Press, 2004.
- 7. Puri, Sharma and Pathania, "Principles of Physical Chemistry", 47th Edition,

Vishal Publishing Co, 2020.

- 8. P W Atkins, "Physical Chemistry", 11th Edn. Oxford University Press, 2018.
- 9. K. L. Kapoor, "A Textbook of Physical chemistry", Volume 1, Macmillan India Ltd
- 10. J.B. Yadav: Advanced Practical Physical Chemistry Goel Publishing House.
- 11. K.K. Sharma : 'An Introduction of Practical Chemistry': Vikas Publishing House, New Delhi

±	Mar Athanasius College (Autonomous), Kothamangalam
	FYUGP SYLLABUS
Programme	B.Sc. CHEMISTRY (Honours)

Course Name	Chemistry In Everyday Life					
Type of Course	pe of Course MDC					
Course Code	M24CH2MDC10	0				
Course Level	Course Level 100 – 199					
Course	This course provide	s a comprehe	nsive under	standing of h	ow chemistry	permeates
Summary	various aspects of ou	ır daily life.		e	5	1
Semester	2		Credits		3	
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours
		2		1		60
Pre-requisites, if any						

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.			
No.		Domains*				
1	Explain the uses of fertilizers and pesticides and their impact on environment	A, An	1, 2			
2	Differentiate between various types of drugs	U, An	1, 2			
3	Differentiate soap types and understand cleansing action	A, An	1, 2			
4	4 Investigate the chemical components in personal care products U, E 1, 2					
*Reme	nber(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), (Create(C), Skill	(S),			
Interes	t (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	Hrs	CO No.
		22		

		Fertilizers – Introduction. Types of fertilizers - Natural,		
		Synthetic, NPK fertilizers. Excessive use of fertilizers		
	1.1	and its impact on the environment. Bio- fertilizers and	8	1
		Organic Manures. (4)		
1.		Pesticides - Introduction. Classification (Brief idea		
Chemistry in		only) - Insecticides, Fungicides, Herbicides (Structures		
Agriculture		not needed). Excessive use of pesticides -		
and Medicine		Environmental hazards. Bio pesticides. (4)		
		Classification of drugs - Analgesics, Antipyretics,		
(15 Hours)		Antihistamines, Antacids, Antibiotics and Antifertility		2
	1.2	drugs with examples (Structures not needed). (4)	7	
		Psychotropic drugs - Tranquilizers, Antidepressants		
		and Stimulants with examples (Structures Not needed).		
		(2)		
		Drug addiction and abuse. Preventionand		
		treatment.(1)		
		Soaps - Introduction. Types of soaps - Toilet soaps,		
	2.1	Washing soaps. Liquid soap. TFM and grades of soaps.	5	3
		Cleansing action. Environmental aspects. (5)		
2.	2.2	Composition of different types of cosmetics - Tooth	10	4
Chemistry in		paste, Hair dye, Face and skin powders, Lipsticks,		
Personal Care		Perfumes, Shaving creams (5)		
Products		Shampoon Ingradiants and functions Different kinds		
		of shampoos (Antidandruff anti-lice herbal and haby		
(15 Hours)		shampoos) (3)		
		Harmful effects of cosmetics.(1)		
		Herbal Cosmetics- Definition, Natural Ingredients		
		used- Aloe Vera, Turmeric, Henna, Amla, Neem,		
		Clove (1)		
3. Practicals:		1. Synthesis of Organic manure	15	1,3
		2 Preparation of Toilet Soan		
		3 Evaluate TEM value of Seen		
		5. Evaluate TTWI value of 50ap		
4.		Teacher specific Content		
		(10 be evaluated internany)		

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Lecture Sessions, (Chalk & Board, PowerPoint presentation) Interactive Sessions Visual aids like videos and models to enhance understanding. Peer discussions.
-----------------------------------	--

MODE OF ASSESSMENT

B. End Semester Examination
Theory Total = 35 marks, Duration 1 hrs
Part A (Short answer) -10 out of $12 \times 1 = 10$
marks
Part B (Short essay) $- 3$ out of 6 x 5 = 15 marks
Part C (Long essay) -1 out of 2 x 10 = 10 marks
Practical Total = 35 marks; Duration- 2 hrs
Record 10 marks, Examination 25 marks

References

- 1. T Coultate, Food: The Chemistry of Its Components, 6th Edition, RSC. 2015.
- 2. S Chowla,, Engineering Chemistry, Danpat Rai Publication, 2020.
- 3. B.K. Sharma. Industrial Chemistry, Krishna Prakashan, 2023.
- 4. CNR Rao- Understanding chemistry, Universities Press, 1999.
- 5. A. K. De, Environmental Chemistry, New age International Ltd. 2021.
- 6. S. S. Dara, A Textbook of Environmental chemistry and pollution control, S.Chand & Company Ltd, 2004.
- 7. Tisdale, S.L., Nelson, W.L. and Beaton, J. D. Soil Fertility and Fertilizers, Macmillian Publishing Company, New York, 1990.
- 8. Buchel, K.H. Chemistry of Pesticides, John Wiley & Sons, New York, 1983.
- Gowariker V.R., Viswanathan N.V. and Jayader Sreedhar, Polymer Science, Wiley Eastern Ltd., 1987.
- 10. H. Singh, V.K Kapoor, Organic Pharmaceutical Chemistry, Vallabj Prakasan, 2011.
SEMESTER 3

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B.Sc. CHEMISTRY (Honours)
Course Name	Inorganic Chemistry-1
Type of Course	DSC
Course Code	M24CH3DSC200

Course Level	200-299					
Course Summary	This course addresses bonding concepts in molecules, the chemistry of p,d, and f block elements, and discusses the fundamentals of nuclear chemistry and their applications. The practical component includes complex preparation and complexometric titration.					
Semester	3	Credits			5	Total
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours
	Approacn	3		1		75
Pre-requisites, if any						

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Apply the various bonding concepts to molecules. Learn different theories to explain covalent and ionic bond	А	1.2
2	Understand the structure and properties of important P block elements such as Boron and Si.	An	1.2
3	Compare the physical and chemical properties of transition metals	An	1, 2
4	Compare the physical and chemical properties of lanthanides and actinides	U	1,2
5	Understand the basic concept of Nuclear Chemistry, nuclear reactions, and Applications	An	1,2,5
6	Apply the knowledge for estimation of Zn, Ca,Mg using complexometric titration and complex preparation	A, S	1,2,4

Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Uni ts	Course description	Hrs	CO No.
1. Chemical Bonding	1.1	Brief introduction on types of bonds- Ionic, covalent, coordinate covalent and metallic bonds, intermolecular	2	1

		forces.		
	1.2	Properties of ionic compounds - polarisation of ions – Fajan's rule and its applications. Lattice energy of ionic compounds - solvation enthalpy and solubility of ionic compounds – Born- Haber cycle and its applications	4	1
	1.3	Covalent Bond: Properties of covalent compounds, dipole moment, VSEPR theory: Postulates - applications.Shapes of molecules - BeF ₂ , BCl ₃ , CCl ₄ , NH ₃ , H ₂ O, PF ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . Valence Bond Theory and its limitations. Hybridization: Definition, characteristics, and Shape of molecules (BeCl ₂ , BF ₃ , NH ₄ ⁺ , H ₃ O ⁺ , PCl ₅ , SF ₆ , XeF ₂ , XeF ₄ , and XeF ₆).	6	1
	1.5	Molecular Orbital Theory – LCAO - bonding and anti- bonding molecular orbitals – bond order and its significance. MO diagrams of homonuclear and heteronuclear diatomic molecules: N ₂ , O ₂ , F ₂ , CO and NO – comparison of bond length, magnetic behavior and bond energy of O ₂ , O ₂ ⁺ , O ₂ ²⁺ , O ₂ ⁻ and O ₂ ⁻ .	3	1
2. Chemistry of p, d and f block elements	2.1	Anomalous behaviour of Boron Hydrides, Preparation, Structure, preparation and bonding of diborane, Classification of boranes, B_5H_9 , B_4H_{10} - Styx numbers. Preparation and uses of borazine - similarities in structure with benzene. Wade's rule (Closo, nido, arachno)	6	2
	2.2	Silicate minerals. Structure of silicates-common silicates, classifications, Framework silicates. Zeolites.	2	2
	2.2	Transition Metals: General characteristics: Metallic character, oxidation states, colour, magnetic properties, catalytic properties, complex formation and alloy formation.	3	3

	2.3	Lanthanides: lanthanide series, lanthanide contraction, similarity in properties, occurrence, oxidation states, chemical properties of Ln(III) cations, magnetic properties, colour and electronic spectra of lanthanide compounds,	2	4
	2.5	Chemistry of actinides – actinide series, abundance and natural isotopes, occurrence, preparation of actinides, oxidation states, general properties.	2	4
	3.1	Introduction, nuclear size and density, Stability of nucleus: n/p ratio, Nuclear binding energy, packing fraction, Nuclear forces, Composition of nucleus, Isotopes, isobars and isotones with examples.	3	5
3. Nuclear Chemistry	3.2	Radioactivity: Natural and induced. Radioactive decay- α -decay, β -decay, γ -decay; neutron emission, positron emission and electron capture. Units of radioactivity, radiation dose. Group displacement law and radioactive series. Measurement of radioactivity: Geiger counters. Separation of radioactive isotopes.	5	5
	3.3	Nuclear reactions, Bethe's notation, Photonuclear reactions, Nuclear fission-Atom Bomb, Nuclear reactors- Nuclear reactors in India -Nuclear fusion- Stellar energy, Hydrogen Bomb.	4	5
	Applications of a 3.5 dating-Neutron act Radiodiagonosis an of radioactivity.	Applications of radioisotopes – Carbon dating-Rock dating-Neutron activation analysis, Isotopes as tracers – Radiodiagonosis and radiotherapy. Industrial applications of radioactivity.	3	5
		Inorganic Practical-1		
4	4.1	Preparation of simple coordination complexes, such as hexaaquacobalt(II), hexaaquacopper(II), hexaaquanickel(II)	8	6

		ions and Prussian Blue.		
	4.2	Complexometric Titration Using EDTA Estimation of Ca Estimation of Mg Estimation of Zn Determination of Hardness of water	10	6
	4.3	Permanganometry 1. Standardization of KMnO ₄ using (i) oxalic acid (ii) Mohr's salt 2. Estimation of Fe ²⁺ in Mohr's salt and crystalline Ferrous Sulphate using standard KMnO ₄ .	10	6
5.		Teacher specific Contents (To be evaluated internally)		
Teaching and Learning Approach		Classroom Procedure (Mode of transaction) Lecture, Practical, Discussion		

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

- 1. J. D. Lee, Concise Inorganic Chemistry, 5th edn., Blackwell Science, London.
- 2. B. R. Puri, L. R. Sharma, Kalia, Principles of Inorganic Chemistry, Milestone Publishers, New Delhi.
- F. A. Cotton, G. Wilkinson and P. L. Gaus, Basic Inorganic Chemistry, 3rd edn., John Wiley. 4.
 A. Elias, The Chemistry of P -block elements, Synthesis , Reactions and Applications, University Press, 2019
- 5. B. Douglas, D. Mc Daniel, J. Alexander, Concepts and models in Inorganic Chemistry
- 6. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry Principles of Structure and

Reactivity, 4th Edn., Harper Collins College Pub., 1993.

- 7. H.J. Arnikar, Essentials of Nuclear Chemistry, Wiley Eastern, 1982.
- 8. S.N. Goshal, Nuclear Physics, S. Chand and Company, 2006.
- 9. Vogel, A.I. (1989) Book. In: Jeffery, G.H., Bassett, J., Mendham, J. and Denney, R.C., Eds.,
- 10. Vogel's Textbook of Quantitative Chemical Analysis, 5th Edition, Longman Scientific and Technical, Harlow, 582.
- 11. D. A. Skoog, D. M. West, and S. R. Crouch, Fundamentals of Analytical Chemistry 8th edn, Books/Cole Nelson

SUGGESTED READINGS

 Greenwood, N.N. & Earnshaw A., Chemistry of the Elements, Butterworth-Heinemann,2012. 2. Miessler, G. L. &. Tarr, Donald A. Inorganic Chemistry 3rd Ed.(adapted), Pearson, 2009 3. Catherine E. Housecroft, Alan G. Sharpe C. E. Barnes, Inorganic Chemistry 4th Ed.. Journal of Chemical Education, 2003.

H	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme/Dis	B.Sc. CHEMISTRY (Honours)
ciple	
Course Name	Organic Chemistry-1
Type of	DSC
Course	
Course Code	M24CH3DSC201

Course Level	200-299				
Course	Organic Chemistry I provide students with an understanding of hydrocar	bons,			
Summary	aromaticity, alcohols, and phenols, carbonyl compounds and active meth	ylene			
	compounds. Module 1 discusses the preparation, properties, reactions and indu	ıstrial			
	uses of Alkanes, Alkenes and Alkynes. In the second module, students delve int	to the			
	concept of aromaticity through the exploration of resonance, focusing on	both			
	benzenoid and non-benzenoid aromatic compounds. The module covers aro	matic			
	electrophilic substitution reactions, as well as the orientation and reactivity of aro	matic			
	compounds towards electrophilic substitution reactions. Third module explores alc	ohols			
	(organic compounds containing hydroxyl groups) and phenols (aromatic compounds				
	containing hydroxyl groups). Module 4 focus on the structure, reactivity and synthetic				
	applications of aldehydes, ketones and active methylene compounds	applications of aldehydes, ketones and active methylene compounds			
Semester	3 Credits 4				
Course Details	Learning Approach Lecture Tutorial Practical Others Total				
	Hours	5			
	4 60)			
Pre-requisites,	Basic understanding about the classification of organic compounds				
if any					

СО	Expected Course Outcome	Learning	PSO No
No.		Domains *	
1	Know the classification, methods of preparation, physical/chemical properties and reactions of alkanes, alkenes, alkynes, alcohols, phenols, carbonyl compounds and active methylene compounds	U, K	1, 2
2	Outline industrial uses of aliphatic compounds	А	1, 3

3	Understand the concept of resonance, aromaticity and	ЦК	1 2			
5	reactions/ reaction mechanism of of aromatic	0, 1	1, 2			
	compound					
	Gain a deep understanding of the mechanisms					
4	underlying key reactions involving carbonyl	U, K, S	1, 2,3			
	compounds and active methylene compounds					
4	Predict the important synthetic applications of active	A, C, S, I	1,3			
	methylene compounds					
5	Develop proficiency in performing functional group	A, C, S, I	1,3			
	transformations					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill						
(S),Int	(S),Interest (I) and Appreciation (Ap)					

COURSE CONTENT

ANASIUS

Content for Classroom transaction (Units)

n

Module	Units	Course description	Hrs	CO No.
1. Alkane, Alkenes and Alkynes	1.1	Alkanes: Physical properties, industrial use - LPG and petrol, Preparation-Wurtz reaction, Reactions -Free radical substitutions (chlorination) with mechanism, cracking.	5	1,2
	1.2	Alkenes: Physical Properties, industrial uses of ethylene, Preparation and Reactions- hydration, hydrohalogenation, ozonolysis, dihydroxylation using KMnO4, Bromination (with mechanisms)	5	1,2
	1.3	Alkynes: Physical Properties, industrial uses of acetylene, Preparation of acetylenes dehydrohalogenation of vicinal dihalides, Reactions- Acidity of alkynes, formation of metal acetylenes		1,2

	2.1	Resonance: - Concept of resonance, resonance	2	3
		energy and resonance hybrid. Orbital picture		
		and stability of Benzene		
	2.2	Aromaticity:- Concept of aromaticity –	9	3
		Huckel's rule –Definition- Application of		
		Huckel's rule to Benzenoid – (benzene,		
		naphthalene and anthracene) and Non-		
		benzenoid compounds- cyclopropenyl cation,		
		cyclopentadienyl anion, tropylium cation,		
2.		heterocyclic aromatic compounds (Pyridine,		
Aromaticity		Pyrrole and furan and Indole), annulenes, azulene		
		. Non-aromatic and antiaromatic compounds)		
		Aromatic electrophilic substitution reactions	2	3
	5	of benzene – General mechanism of		
		electrophilic substitution-halogenation,		
	- 1	nitration, sulphonation, Friedel Craft's		
		alkylation and acylation		
		Orientation of aromatic substitution – ortho-	2	3
		para and meta directing groups-Ring activating		
	1	and deactivating groups with examples		
		Alcohols-Classification (Monohydric,		1.5
		Dihydric, Polyhydric, primary, secondary,		1,5
		Tertiary), Luca's Test, Preparation, Physical	_	
	3.1	properties-hydrogen bonding- Chemical	7	
		Properties-Esterification, Reactions with		
		Sodium and KMnO4, Pinacol Pinacolone		
		rearrangement (with mechanism), Ascending		
		and descending in alcohol series.		
3.		Phenols- Acidity of phenol, Effect of		1,5
Alcohols		substituent on acidity, Comparison of acidity		
and	3.2	of phenols with alcohols and carboxylic acid.	8	
Phenols		Hydrogen bonding (inter and intramolecular)		
		in phenols. Effect of H-bonding on boiling		
		point and solubility in water. Chemical		

	Reactions of Phen	ol including Reimer –		
	Tiemann reaction, Le	ederer- Mannase reaction,		
	Fries Rearrangemen	t. Liebermann's nitroso		
	reaction. Structure	and uses of Catechol,		
	Resorcinol, Quinol a	nd Picric acid		
	4.1 Structure and reac	tivity of the carbonyl	2	3,5
	compound - acidit	y of alpha hydrogen.		
	Nucleophilic addition	n reactions of aldehydes		
	and ketones			
	4.2 Reaction with HCN,	alcohol, water, ammonia	5	3,5
	and ammonia deriv	vatives (primary amine,		
	secondary amines	, hydrazine, phenyl		
	hydrazine, Borsche's	reagent, hydroxylamine,		
4.	semicarbazide), Grig	nard reagent		
Aldehvdes .	Reaction with To	llen's and Fehling's	3	3
Ketones	solution. Chemistry of	of enolates and enamines-		
and active	Stork enamine rea	ctions-Wittig, Favorski		
mothylono	reaction	IGAL /		
aomnounda	Compounds contain	ning active methylene	5	3,4
compounds	groups: - Keto-enol	tautomerism, Synthesis		
	and applications	of malonic ester and		
	acetoacetic ester, cya	no acetic ester		
	Teacher Sr	ecific Contents		
5.	(To be eval	uated internally)		
		······································		
Teaching and	Classroom Proced	ure (Mode of transaction)	
Learning	Classroom lecture	practical training in labora	torv	
Approach		praetical training in 1a001a	y	

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \times 10 = 20$
	marks

- R. T. Morrison and R.N. Boyd, 'Organic Chemistry', 6th Edition Prentice Hall of India. (Chapter-18)
- 2. I. L. Finar, Organic Chemistry 6 th Edition, Vol.- I, Pearson. ((Chapters-8,27) 25
- M. K. Jain and S.C. Sharma 'Modern Organic Chemistry', 3rd Edition, Visal Publishing Company Co. (Chapter-22)
- K.S Tewari and NK Vishnoi 'Organic Chemistry', 3rd Edition, Vikas Publishing House (Chapter-19)
- 5. B.S. Bahl 'Advanced organic Chemistry', S. Chand
- 6. McMurry, J. E. Fundamentals of Organic Chemistry; Cengage Learning, 2010.
- 7. Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry; Oxford University Press, USA, 2012.
- 8. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part A. Structure and Mechanisms; 5th ed.; Springer: New York, 2007
- 9. Wade, L. G. Organic Chemistry; Pearson Education India, 2008.
- 10. Bruice, P. Y. Organic Chemistry; Pearson, 2017.
- 11. Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry; John Wiley & Sons, 2008.
- 12. Pine, S. H. Organic Chemistry; 5th ed.; McGraw-Hill, 2006

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme/	B.Sc. CHEMISTR	Y (Honours)					
Discipline							
Course Name	Chemistry of Natural Products						
Type of Course	DSE						
Course Code	M24CH3DSE200	M24CH3DSE200					
Course Level	200-299	200-299					
Course Summary	This course provid various natural pro	es a comprehe ducts, phytoc	ensive under hemicals, an	standing of t d nutraceutic	he propertie cals.	es of	
Semester	3		Credits		4		
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours	
		3		1		75	
Pre-requisites, if any							

CO		Learning	DOO N
No.	Expected Course Outcome	Domains *	PSO No.
1	Give an idea about the fundamentals of terpenoids, steroids, vitamins, lipids, andalkaloids.	U	1
2	Illustrate Nutraceuticals' classification, scope, future prospects, sources and properties.	А	1
3	Discuss the role of Nutraceuticals in managing health and diseases and quality control and assurance.	Е	1
4	Investigate Nutraceuticals as bridging the gap between food and drug.	Ap	1,4
5	Acquire skills for extracting and isolating plant pigments and terpenoids from plant products.	S, An	1,4

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Units	Course description	Hrs	CO No.
1 Natural products (15 hours)	1.1	Terpenoids: Essential oils - isoprene rule. Elementary study of citral, geraniol and natural rubber. Alkaloids- Isolation, general properties. Structure of coniine Lipids: Simple lipids and compound lipids- isolation-properties.	8	1
	1.2	Vitamins - Structure and biological activity ofvitamins A, B and C. Steroids- general introduction, HDL and LDL, cholesterol and bile acids.	7	1
2. Nutraceuticals and Functional foods	2.1	Nutraceuticals: Classification, scope & future prospects. Sources of Nutraceuticals. Properties, structure and functions of Glucosamine, Lycopene, Carnitine, Melatonin and Ornithin. Use of proanthocyanidins, grape products, and flaxseed oil as Nutraceuticals.	7	2
(15 hours)	2.2	Food as remedies: Nutraceuticals bridging the gap between food and drug, Nutraceuticals in treatment for cognitive decline, Nutraceutical remedies for common disorders like Arthritis, Bronchitis, circulatory problems, hypoglycemia, Nephrological disorders, Liver disorders, Osteoporosis, Psoriasis and Ulcers etc. A brief idea about some Nutraceutical supplements like Caffeine, Green tea, Lecithin, Mushroom extract, Chlorophyll, Spirulina, etc.	8	4
3. Nutraceuticals and the Future of Medical Science: Quality Control & Assurance	3.1	The increasing role of Nutraceuticals in managing health and diseases, the development of designer foods for specific chronic diseases like diabetes, cardiovascular diseases, AIDS, and degenerative diseases like Parkinson's, functional foods for specific sports, oligosaccharides, and dietary fibres of microbial and plant origin as Nutraceuticals of the future.	8	3
(15 hours)	3.2	Quality Control and Assurance: QC concepts in Nutraceuticals and food products, Label claims and their support. Requirements for implementing quality assurance in Nutraceuticals and food products.	7	3

	 TLC separation of Plant pigments - Curcumin and carotene. Isolation of lycopene from tomato. Isolation of citral from lemongrass oil. Isolation of eugenol from clove oil. 	15	5
4. Practicals (30 hours)	 4.2 1. Isolation of total catechins and caffeine from black tea and green tea. 2. Isolation of polyphenols from moringa leaves and tamarind seed. 3. Assessment of purity and quality using appropriate standard tests for milk and butter. 	15	5
5	Teacher Specific contents This content will be evaluated internally.		
Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture Discussion Presentation		

B. End Semester Examination
Theory Total = 50 marks , Duration 1.5 hrs
Part A (Short answer) – 10 out of 12 x1 =10
marks
Part B (Short essay) -4 out of $6 \ge 5 = 20$ marks
Part C (Long essay) -2 out of $4 \times 10 = 20$ marks
Practical Total = 35 marks; Duration- 2 hrs
Record 10 marks, Examination 25 marks

- Handbook of Nutraceuticals and Functional Foods Edited by Robert E.C. Wildman, Routledge Publishers.
- 2. Nutraceuticals by L. Rapport and B. Lockwood, Pharmaceutical Press.
- Methods of Analysis for Functional Foods and Nutraceuticals Edited by W. Jeffrey, Hursts, Routledge Publishers.
- 4. Food is Medicine by P.J Cousion; Duncan Baired Publishers, London.
- Dietary Supplements of Plant Origin, M. Maffei (Ed.), Taylor & Francis, 2003.
- 6. Nutraceutical beverages Chemistry, Nutrition and Health Effects, Shahidi and Weerasinghe (Ed.), American Chemical Society, 2004.
- T.P. Coultate, Food- The Chemistry of its components. Royal Society of Chemistry, London.
- 8. I.L. Finar, Organic Chemistry Vol. 1 & 2, 6th edn., Pearson, 2002.
- 9. Puri and Sharma. Advanced Organic Chemistry.
- R. T. Morrison, R. N. Boyd, Organic Chemistry, 7th Edn., Pearson Education, New Delhi, 2013.
- I.L. Finar, Organic Chemistry, Vol. I, 5th Edn., Pearson Education, New Delhi, 2013.
- M. K.Jain, S. C. Sharma, Modern Organic Chemistry, 3rd Edn., Vishal Publishing Company Co., 2010.
- Swaminathan M., Food Science and Experimental Foods, Ganesh and Company.
- Handbook of Analytical Techniques Vol. I, Gunzler and Williams, Wiley-VCH, 2002.
- 15. Instrumental analysis, Skoog, Holler, CrouchBrooks/Cole, 2007.
- 16. Bioanalysis Principles & Practices -Richard F Venn.
- Chromatography: Liquid Chromatography, Mass Spectrometry, W M A Niesson, 2nd and 3rd Ed.
- Chromatography: Gas Chromatography (Basic)-Harhold M Mcnair, James M Miller.

Mar Athanasius College (Autonomous), Kothamangalam

FYUGP SYLLABUS

Programme	B.Sc. CHEMISTRY (Honours)								
Course Name	Food Chemistry								
Type of Course	DSE	DSE							
Course Code	M24CH3DSE201								
Course Level	200-299								
Course Summary	This course covers the properties, and reaction the various substances improve texture, and pr	This course covers the scientific principles behind the composition, structure, properties, and reactions of food components. It also deals with topics related to the various substances added to foods to preserve flavour, enhance taste, improve texture, and prolong shelf life							
		~							
Semester	3	ASIL	Credits	-	4				
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours			
	MM	3	GE	1		75			
Pre-requisites, if any		ALAANG	ALLER A	n					

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Analyse the chemical composition of various food components, such as proteins, carbohydrates, lipids, vitamins, and minerals.	An	1,2,3
2	Apply principles of food chemistry to understand and predict the behaviour of food during processing, storage, and cooking.	А	1,2,3
3	Explain the relationship between chemical reactions, food additives, and food preservation methods.	U	1,2,3
4	Educate and enlighten the public with respect to food and dietary practices.	А	4,5
5	Apply the principles of food chemistry to conduct simple laboratory experiments.	А	4,
*Remen Interest	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E) (I) and Appreciation (Ap)	, Create (C), Sk	cill (S),

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1.1	Food additives – definition. Preservatives- Natural food preservatives, Traditional food preservation methods, Artificial preservative agents, Modern food preservation techniques, Safety concerns of food preservatives.	3	2,3
	1.2	Food Colours- Classification, Chemistry of food colourants, non-permitted food colours, Quality assurance of food colourants.	2	2,3
1. Food Additives	1.3	Fragrances, Flavouring Agents and Enhancers- Classification, chemistry, Quality control of flavour compounds.	2	2,3
	1.4	Emulsifiers- Mechanism. Role, Types with examples.	1	2,3
	1.5	Stabilisers, Gums, Thickeners and Gelling Agents	1	2,3
	1.6	Antioxidants and Radical Scavengers- Chemistry of free radicals and antioxidants, Types of antioxidants, Safety concerns of antioxidants.	2	2,3
	1.7	Food Acids and Acidity Regulators, Flour Treatment/Improving Agents, Leavening agents, Anticaking Agents, Minerals and Mineral Salts, Dietary Supplements- Vitamins	3	2,3
	1.8	FSSAI, Food Safety and Standards Act	1	2,3
2. Role of Water, Carbohydr ates, Lipids and Proteins in Food	2.1	Structure and chemical properties of water, Solute effects on water: state of water in foods, Water activity: principles, measurement, control, effects, related concepts.	4	1
	2.2	Carbohydrates- Basic chemistry, reactivity and sweetness of simple sugars and oligosaccharides, Sugar derivatives: sugar alcohols, glycosides, etc. Browning and related reactions. Polysaccharides- starches, celluloses, gums.	4	1,2
	2.3	Lipids- Content and role in foods, Chemical, nutritional and physical properties, Processing of fats and oils, Degradation reactions.	3	1,2

	 Proteins- Amino Acids and proteins, Physical properties of proteins, Basic properties: hydration, ionization, colloidal behaviour, Functional properties, Effects of food processing: changes occurring in chemical, functional & nutritional properties of proteins 	4	1,2
			I
	 Enzymes- Catalysis by enzymes, Oxidoreductases, Glucose Oxidase, Hydrolases, Peptidases, Food Enzymes. 	3	1,2
3. Enzymes, Vitamins and	3.2 Vitamins- Fat-Soluble Vitamins, Water-Soluble Vitamins, Toxicity of Vitamins, Sources of Vitamins, General Causes of Variation/Losses of Vitamins in Food, Biological function of vitamins,	5	1,2
Minerals	3.3 Minerals- Nutritional Aspects of Minerals, Essential Mineral Elements, Bioavailability, Effect of Processing on Mineral Bioavailability, Chemical and Functional Properties of Minerals in Foods.	5	1,2
	3.4 Societal Role of Food Chemists	2	4
4. Practicals	 Threshold concentrations of primary tastes. Use refractometer to determine the soluble solid content of sucrose solutions of different compositions. Determine the elevation of boiling point by adding NaCl to water. Compare the effectiveness of various emulsifying agents. 	30	5
	 Test the solubility of vegetable oils in different solvents and determination of specific gravity of oils. Fehling's test for reducing sugars. Influence of added ingredients on gluten development. Determination of the moisture content of corn syrup and milk (liquid) using a microwave drying oven. Determination of the ash content of a variety of food products by the dry ashing technique. Determination the total carbohydrate content of soft drinks. Determination of the vitamin C content of various orange juice products using 2,6-dichloroindophenol titration walue of oils. Separation and identification of lipids in some 		

	chromatography (TLC).	
	(Conduct and record any six experiments)	
	Teacher Specific contents	
5	(This content will be evaluated internally.)	
5	A HAND SO F	

	Ren h
	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	Lecture-Based Approach, Interactive Discussions, Laboratory Sessions, Flipped Classroom, and Peer Teaching and Collaborative Learning.

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$ marks
Quiz, Test Papers, seminar	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Practical Total = 15 marks	Part C (Long essay) -2 out of $4 \times 10 = 20$ marks
Lab performance, record, field report etc.	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

- 1. S Damodaran, K L Parkin, Fennema's Food Chemistry, 5th Edition, CRC Press 2017.
- 2. H D Belitz, W Grosch, P. Schieberle, Food Chemistry, 4th Edition, Springer, 2009.
- 3. T Coultate, Food: The Chemistry of Its Components, 6th Edition, RSC. 2015.
- 4. T A M Msagati, Chemistry of Food Additives and Preservatives, John Wiley & Sons, 2013.
- 5. V Kontogiorgos, Introduction to Food Chemistry, Springer, 2021.
- 6. N Agarwal and A Srivastava, Food Chemistry, Anu Books, 2023.
- 7. C M Weaver, J R Daniel, The Food chemistry Laboratory, CRC Press, 2005.
- 8. S S Nielsen, Food Analysis Laboratory Manual, Third Edition, Springer, 2019.
- 9. D D Miller, C K Yeung, Food Chemistry A Laboratory Manual, Wiley, 2022.
- 10. A V. Ramani, Food Chemistry, Mjp Publishers. 2011.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme	B.Sc. CHEMISTRY	B.Sc. CHEMISTRY (Honours)					
Course Name	Food Chemistry and	Food Chemistry and Nutrition					
Type of Course	MDC	MDC					
Course Code	M24CH3MDC200	M24CH3MDC200					
Course Level	200-299						
Course Summary	This course provides a comprehensive understanding of the composition and health implications of various food items.						
Semester	3		Credits		3	Total	
		Lecture	Tutorial	Practical	Others	Hours	
Course Details	Learning Approach	ANASH	500	0		45	
Pre-requisites, if any		-	E				

CO No.	Expected Course Outcome	Learning Domains *	PSO No			
1	Understand the concept of Nutrition	U	1			
2	Demonstrate a sound knowledge of various food additives	An	1			
3	Describe the health effects of Food Adulterants	Е	1,4			
4	Evaluate different adulterants in food	Е	1,3,4			
5	Apply the concept of food chemistry to conduct simple laboratory experiments.	А	1,4			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest						
(I) and A _l	ppreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
1. Introduction	1.1	Functions of Food, Nutrients in food- Energy yielding nutrients (Carbohydrates, Proteins and Lipids) and Protective nutrients (Vitamins and Minerals)	3	1
to Nutrition and Food Additives (15	1.2	Food Additives- Definition, importance of food additives, Types of Additives -Natural, Synthetic and Artificial- with one example. E- Number	4	2
hours)	1.3	Preservatives, Food colours, Flavour enhancer, Sweetners, Emulsifier, Stabilizer, Glazing Agents, Thickeners, Gelling agents. (Definition, Aim with examples)	8	2
	2.1	Definition, Types (Intentional, Incidental and metallic contamination) and Health effects.	3	3
2. Food Adulteration	2.2	Common Adulterants in different foods, their Health Effects and Detection: Milk, Ghee, Butter, Honey, Sweets, Chilli powder, Turmeric, Tea, Sugar and Salt, black pepper, Wheat and rice.	7	3
and Safety (15 hours)	2.3	Food Adulteration Act- Objectives	1	4
	2.4	Modern food habits- An introduction, Health effects of fast food, Junk food and instant food. Composition and health effects of Carbonated water and soft drinks. A comparative study of Traditional food habit and modern food habits	4	
3. Activity		 Detection of adulterants in various food items Demonstration of preparation of various value added food products- Jam, Squash. To find out the moisture content from a given food sample by Lab oven method Determination of threshold concentrations of primary tastes. Test the solubility of vegetable oils in different solvents and determination of specific gravity of oils. 	15	4,5
4.		Teacher specific Contents		
		(10 be evaluated internally)		

	Classroom Procedure (Mode of transaction)
Teaching	Lecture Sessions, Interactive Sessions including discussions, demonstrations, and
and	experiments to engage students actively and visual aids like presentations, videos,
Learning	and models to enhance understanding. Encourage students to ask questions during
Approach	or after the lectures. Begin with safety instructions and guidelines for lab work.
	Allow students to conduct experiments under supervision (for lab work).

B. End Semester Examination
Theory Total = 50 marks, Duration 1.5 hrs
Part A (Short answer) -10 out of $12 \times 1 = 10$
marks
Part B (Short essay) -4 out of $6 \ge 5 = 20$ marks
Part C (Long essay) -2 out of $4 \ge 10 = 20$
marks

- 1. Swaminathan M., Food Science and Experimental foods, Ganesh and Company, 2005.
- Jayashree Ghosh, Fundamental concepts of Applied chemistry, S. Chand & Co. Publishers, 2010.
- Thankamma Jacob, Text Books of applied chemistry for Home Science and allied Sciences, Macmillan, 2015.
- 4. B. Sreelakshmi, Food Science, New Age, 2018.
- 5. S Roday, Food Science And Nutrition, 3rd Edition, Oxford University Press, 2018.
- 6. C M Weaver, J R Daniel, The Food chemistry Laboratory, CRC Press, 2005.
- 7. I Bevier, Food and Nutrition Laboratory Manual, Forgotten Books, 2018.
- 8. S Sehgal, A Laboratory Manual of Food Analysis, International Publishing, 2016

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme	B.Sc. CHEMIST	B.Sc. CHEMISTRY (Honours)					
Course Name	Forensic Chemistry						
Type of Course	VAC						
Course Code	M24CH3VAC200						
Course Level	200 – 299						
Course Summary	This course aims to provide a comprehensive understanding of the basic principles of chemistry as they apply to forensic science. It focuses on enabling non-chemists to comprehend and utilize chemical concepts in forensic analysis.						
Semester	3 Credits 3 Total						
Course Details	Learning Approach	Lecture 3	Tutorial	Practical	Others	Hours 45	
Pre-requisites, if any		SHE L	- COL				

Г

Т

COURSE OUTCOMES (CO)

СО	Expected Course Outcome	Learning	PSO No.	
No.	AMANGA	Domains*	100100	
1	Recognize various types of chemical substances, their properties, and their relevance in forensic contexts	U	1	
2	Utilize fundamental chemical principles to understand forensic analysis techniques	А	1, 2	
3	Evaluate and interpret chemical evidence commonly encountered in forensic investigations	An, E	1, 2	
4	Articulate the role of chemistry in forensic science, including its impact on legal proceedings and criminal investigations	U, A	1, 2	
5	Extract meaningful conclusions from chemical data obtained during forensic analysis	U, C	1, 2	
*Remen	nber(K), Understand(U), Apply(A), Analyse(An), Evaluate(E),	Create(C), Skil	l(S),	
Interest	(I) and Appreciation (Ap)			

COURSE CONTENT

Module	Units	Course Description	Hrs	СО
1,1000010	C IIIUS			No.
		Poisons-types and classification- diagnosis of poisons		
		in the living and the dead - clinical symptoms - post-	4	1,2,3,4,5
	1.1	mortem appearances.		
	1.2	Heavy metal contamination (Hg, Pb, Cd) of sea foods.	3	1,2,3,4,5
1. Poisons	1.3	Use of neutron activation analysis in detecting Arsenic	2	1,2,3,4,5
(15 Hours)		in human hair		
	1.4	Treatment in cases of poisoning - use of antidotes for common poisons.	3	1,2,3,4,5
	1.5	Analysis of biological substances - blood, saliva, urine	3	1,2,3,4,5
	<	and hair		
		Accidental explosion during manufacture of matches		1,2,3,4,5
	2.1	and fireworks.	2	
	2.2	Human bombs- possible explosives (gelatine sticks and	3	1,2,3,4,5
		RDX)		
2.	2.3	Metal detector devices and other security measures for	2	1,2,3,4,5
Crime Detection		VVIP		
(15 Hours)	2.4	Composition of bullets and detecting powder burn	2	1,2,3,4,5
	2.5	Analysis of incendiary and timed bombs - spill of toxic	3	1,2,3,4,5
		and corrosive chemicals from tankers.		
	2.6	DNA Finger printing for tissue identification in	3	1,2,3,4,5
		dismembered bodies		
		-Detecting steroid consumption in athletes and race		
		horses		
3	3.1	Documents - different types of forged signatures-	5	1,2,3,4,5
J. Forgery and		simulated and traced forgeries - inherent signs of		
Counterfeiting		forgery methods - writing deliberately modified - uses		
(15 Hours)		of ultraviolet rays - comparison of type written letters		
(15 110015)	3.2	Checking silver line water mark in currency notes, alloy	4	1,2,3,4,5
		analysis using AAS to detect counterfeit coins		
	3.3	Detection of gold purity in 22 carat ornaments -	3	1,2,3,4,5

Content for Classroom transaction (Units)

		detecting gold plated jewels - authenticity of diamond.					
3.4		Tracks and traces - small tracks and police dogs-foot	3	1,2,3,4,5			
		prints- walking pattern or tyre marks.					
		Glass fracture – tool mark paints – fibres.					
4.		Teacher specific Contents (To be evaluated internally)					
		Classroom Procedure (Mode of transaction)					
Teaching and Learning Approach		 Lecture Sessions, (Chalk & Board, PowerPoint p Interactive Sessions Visual aids like videos and models to enhance up Peer discussions. 	oresentation nderstand	on) ing.			

MODE OF ASSESSMENT					
A. Continuous Comprehensive Assessment	B. End Semester Examination				
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs				
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$				
Quiz, Test Papers, seminar	marks				
C/AM	Part B (Short essay) -4 out of 6 x 5 = 20 marks				
SNI EDI	Part C (Long essay) -2 out of $4 \ge 10 = 20$				
A SUCC	marks				

References

- 1. T.H.James, Forensic Sciences, Stanley Thornes Ltd, 1987.
- Richard, Criminalistics An Introduction to Forensic Science (College Version), 8th Edition, Sofestein, Prentice Hall, 2003.
- B R Sharma, Forensic Science in Criminal Investigation And Trials, 6th Edn., Lexis Nexis, 2020.
- 4. B.S. Nabar, Forensic Science in Crime Investigation, Asia Law House, 2022.
- 5. Glencoe, Forensic Laboratory Manual, McGraw Hill, 2001.
- 6. S Bell, Forensic Chemistry, CRC Press, 2022.
- 7. K M Elkins, Introduction to Forensic Chemistry, CRC Press, 2019.

Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS

Programme/ Discipline	B.Sc. CHEM	IISTRY (Ho	onours)			
Course Name	Inorganic a	Inorganic and Organic Chemistry				
Type of Course	Discipline S Sciences an	Discipline Specific Course (DSC) /Minor (For students who have opted Life Sciences and Family & Community Science as core).				
Course Code	M24CH3D	M24CH3DSC202				
Course Level	200-299	200-299				
Course Summary	This course bio inorgan	This course provides a comprehensive understanding of the various aspects of bio inorganic chemistry and chemistry of biomolecules.				
Semester	3 Credits 4 Total					Total
Course Details	Learning Approach	Lecture 3	Tutorial	Practical	Others	Hours
Pre- requisites, if any		SHANA	SIUSCO	T	1	

CO No.	Expected Course Outcome	Learning Domains *	PSO No.
1	Describe the classification, properties and structure of amino acids, proteins and carbohydrates.	U	1
2	Describe the basic principles of bioinorganic chemistry and the importance of metals in biological systems.	Ар	1
3	Investigate the food adulterants present in the food items we use in our daily lives and give an idea about the fundamentals of terpenoids, steroids, vitamins, lipids, and	An	1
	alkaloids.		
4	Investigate and characterize various functional groups present in different organic compounds and identify them.	S	1,4
5	Describe the characterization and identification of various functional groups present in organic compounds and analyze the compounds using micro scale methods.	S	1,4
* D			·II (C)

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Units	Course description	Hrs	CO
				No.
1. Biomolecules (15 Hours)	1.1	Amino acids and proteins: Classification of amino acids, zwitter ion, properties of amino acids, Peptides – peptide bond, Proteins- amino acids as building block of proteins, prosthetic group, properties, denaturation. Structure of proteins.	8	1
	1.2	Carbohydrates – Classification- Mono and disaccharides, Properties of glucose, fructose and lactose. Mutarotation. Starch and cellulose. Industrial applications of cellulose.	7	1
2. Bioinorganic Chemistry	2.1	Haemoglobin and myoglobin, pH of blood, cytochromes, Ferredoxine - Mechanism of O ₂ and CO ₂ transportation - Chlorophyll and photosynthesis (mechanism not expected) elementary idea of photophosphorylation.	7	2
(15 Hours)	2.2	Photosynthesis and respiration - comparison. Elementary idea of structure and mechanism of action of sodium-potassium pump. Biochemistry of zinc and cobalt.	8	2

	3.1	Food Additives: Common food	8	3
		adulterants in various food materials		
		and their identification: Milk,		
		vegetable oils, tea, coffee powder		
		and chilli powder. Food		
		preservatives, artificial sweeteners,		
3.		emulsifying agents, antioxidants,		
		leavening agents and flavour		
Food Additives and		enhancers. Commonly used		
Natural products		permitted and non-permitted food		
(15 Hours)		colours Fast foods and junk foods		
		& their health effects - Soft drinks		
		and their health effects		
<	32	Terpenoids: Essential oils - isoprene	7	3
	3	rule Alkaloids, Isolation general	,	5
		properties		
	1.1.1	Lipids: Simple lipids and compound		
		lipids isolation properties		
		Vitaming: Structure and biological		
	R	entivity of vitaming A and C		
	12-	Staroida: gaparal introduction		
		shelesterol and hile soids		
		Missessele and busic of oursesio		
		Microscale analysis of organic		
		compounds	15	15
		a. Tests for elements: Nitrogen	15	4,3
	4.1	and Halogen		
4.		b. Study of reactions of common		
Organic Chemistry		functional groups		
Practicals		Qualitative analysis with a view to		
(30 Hrs)		the characterisation of functional		
		groups and identification of the		
	4.2	following compounds: Naphthalene,	15	15
		benzyl alcohol, phenol,	15	4,5
		benzaldehyde, acetophenone,		

	benzoic acid, phthalic acid, cinnamic acid, benzamide, urea,				
	aniline, and glucose.				
	Teacher specific Contents				
5.	(To be evaluated internally)				
Teaching and	Classroom Procedure (Mode of transaction)				
Learning Approach	Lecture, Practical, Discussion				

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of $6 \ge 20$ marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \times 10 = 20$
	marks
40	Practical Total = 35 marks; Duration- 2 hrs
Han	Record 10 marks, Examination 25 marks

- 1. T.P. Coultate, Food- The Chemistry of its components. Royal Society of Chemistry, London.
- 2. I.L. Finar, Organic Chemistry Vol. 1 & 2, 6th edn., Pearson, 2002.
- 3. Puri and Sharma. Advanced Organic Chemistry.
- 4. R. T. Morrison, R. N. Boyd, Organic Chemistry, 7th Edn., Pearson Education, New Delhi, 2013.
- I.L. Finar, Organic Chemistry, Vol. I, 5 th Edn., Pearson Education, New Delhi, 2013.
 3.
- M. K. Jain, S. C. Sharma, Modern Organic Chemistry, 3 rd Edn., Vishal Publishing Company Co., 2010.
- 7. Swaminathan M., Food Science and Experimental Foods, Ganesh and Company.
- J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas, Vogel's Text Book of Quantitative Chemical Analysis, 6th edn. Pearson Education 2003.
- 9. R. Gopalan, Analytical Chemistry, S. Chand and Co., New Delhi, 2003.
- 10. A.I Vogel, A Text Book of Practical Organic Chemistry, Longman.

- 11. F. G. Mann and B.C. Saunders, 'Practical Organic Chemistry' Fourth Edition, Pearson Education.
- 12. V. K. Ahluwalia and S. Dhingra , Comprehensive Practical Organic Chemistry, Universities Press.

Mar Athanasius College (Autonomous), Kothamangalam

FYUGP SYLLABUS

Programme/Discipline B.Sc. CHEMISTRY (Honours)

Course Name	Organic Chemistry	Organic Chemistry-2					
Type of Course	DSC	DSC					
Course Code	M24CH4DSC200	M24CH4DSC200					
Course Level	200 - 299	200 - 299					
Course Summary	This course delves in focusing on fundament and nitrogen-containin acid. The course als qualitative analysis of v properties and reactivity including their acidit reactions etc. Second properties of nitocom isocyanides. Third mod acid, proteins and Nucle	This course delves into the intricate world of bioorganic chemistry, focusing on fundamental classes of organic compounds: carboxylic acids, and nitrogen-containing compounds, amino acids, proteins and nucleic acid. The course also provides practical experience in microscale qualitative analysis of various organic compounds. First module study the properties and reactivity of carboxylic acids, derivaties of carboxylic acids ncluding their acidity, nucleophilic substitution, and esterification reactions etc. Second modules covers the preparation and chemical properties of nitocompounds, amines, diazo compounds, cyanides and socyanides. Third module discuss about the chemical properties of amino acid proteins and Nucleic acids					
Semester	4	NGALA	Credits		4	Total	
Course Details	Learning Approach	Lecture	Tutoriall	Practical	Others	Hours	
		3	- /	1		75	
Pre- requisites, if any	Basic understanding ab	out the cl	assification	of organ	ic compo	unds	

CO Expected Course Outcome Image: Course Outcome Image: Course Outcome No. Expected Course Outcome Image: Course Outcome Image: Course Outcome No. Image: Course Outcome Image: Course Outcome Image: Course Outcome No. Image: Course Outcome Image: Course Outcome Image: Course Outcome No. Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome Image: Course Outcome
--

	Understand the preparation and properties of carboxylic acids,	U, K	1,2
1	derivatives of carboxylic axids, nitrocompounds, amines and		
1	diazo compounds, cyanides and isocyanides, Amino acids,		
	Proteins and Nucleic acids		
	Predict the product and reasonable mechanism for reactions of		2,3
2	Amino acids, Nitrogen containing compounds, carboxylic	A, An, E	
	acids, and its derivatives		
	Design synthetic pathways to higher and lower homologous		2,3
3	sories in acids	A, C, S	
	series in acids		
4	Analyse various organic compounds using documented	A.S	1.4
	procedures by microscale analysis		-, .
	ANASIUS		
5	Determine the physical constants of organic compounds and	A, S	1,4
	systematically record the observations		
*R <i>o</i>	member (K) Understand (U) Apply (A) Analyse (Ap) Evaluat	e (E) Creat	te (C)
nu	Skill (S) Interest (I) and Appreciation (Ap)	c (2), ci cui	~~~~~,
	Skui (S), Interest (I) und Apprectation (Ap)		

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
1. Carboxylic acids				

	2.1	Structure and Acidity of Carboxylic acids- effects of substituents on the acid strength of carboxylic acids- Physical properties and Chemical reactions including Reduction, decarboxylation, Kolbe's electrolysis. Hell-Volhard- Zelinsky reaction. Ascending and descending in acid series, Arndt-Eistert synthesis (Wolff rearrangement to be mentioned)	8	1,2,3
	2.2	Acid derivatives-Conversion of acid to acid chlorides, amides, esters and anhydrides Comparative study of nucleophilicity of acyl derivatives. Reactions of acid derivatives acid chlorides, amides, esters and anhydrides with mechanisms	7	1,2,3
2. Nitrogen Containing Compounds	3.1	Nitro Compounds: Preparation of aliphatic and aromatic nitro compounds by nitration, Tautomerism of nitromethane. Reactions of nitro compounds: Reduction products of nitrobenzene in acidic, neutral and alkaline media. Electrolytic reduction, and selective reduction of polynitro compounds. Formation of charge transfer complexes	3	1,2
	3.2	Amines:- Isomerism- basicity of aliphatic and aromatic amines- Preparation- Gabriel-Phthalimide reaction, Hoffmann bromamide reaction-Reactions of amines - Separation and identification of a mixture of primary, secondary and tertiary amines- Hinsberg test - Quaternary amine salts as phase-transfer catalysts.	4	1,2
	3.3	Diazo compounds:- Preparation of diazonium salts from aromatic amines, conversion diazonium salts to benzene, phenol, chloro, bromo, iodo, fluoro benzenes, nitro benzene and azo dyes with mechanisms (Sandmeyers and Gattermann reactions-Schiemann and Gomberg reactions)	4	1,2
	3.4	Cyanides/Isocyanides:-Preparation cyanides from alkyl halides and carboxylic acids-Reactions of	4	1,2
		cyanides: Hydrolysis, reduction, reaction with Grignard reagent- Preparation isocyanides from alkyl		
---	-------	--	---------	------
		halides and primary amines-Reactions of isocyanides: Hydrolysis, Reduction.		
3. Amino Acids, Peptides, Proteins and Nucleic Acids	3.1	Amino Acids Classification of amino acids. Synthesis- Gabriel phthalimides synthesis , Strecker synthesis, Ionic properties and Ninhydrin reaction. Zwitterion structure and Isoelectric point	4	1,2
	3.2	Polypeptides. Synthesis of polypeptides - DCC method. Merrifield's solid phase peptide synthesis.	3	1,2
	3.3	Primary, secondary, tertiary and quaternary structure of proteins: α - helix and β -pleated sheets. Denaturation of proteins.	4	1,2
	3.4	Nucleicacids: Components of nucleic acids, nucleosides and nucleotides. Importance of purines and pyrimidines in biological systems- Adenine. Thymine, Guanine, Cytosine and Uracil -Structure of DNA, Watson, and Crick model. Differences between DNA and RNA. Protein biosynthesis, Replication of DNA	4	1,2
4. Qualitative Organic Analysis	4.1	Microscale organic analysis- test for aromatic character- ignition test, nitration test, picrate test for aromatic compounds, tests for unsaturation. Determination of physical constants- melting point, boiling point.	15	4,5
	4.2	Systematic and microscale qualitative analysis of the following organic compounds and characterization with its physical constant and a derivative Polynuclear hydrocarbons, reducing sugars, phenol and halogen compounds Aldehyde, ketone, carboxylic acid, 1,2	15	4,5
		dicarboxylic acid, unsaturated acid, phenol, phenolic acid, ester, Aromatic primary amines, amide, diamide, nitro compounds		
5.		Teacher Specific Contents (To be evaluated internally)		
Teaching and Lea	rning	Classroom Procedure (Mode of trans	action))
Annroach	0	Classroom lecture)	
Арргоасп		Demonstration and practical training in	laborat	tory

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$ marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

- 1. R. T. Morrison and R.N. Boyd, 'Organic Chemistry', 6th Edition Prentice Hall of India. (Chapter-18)
- 2. I. L. Finar, Organic Chemistry 6 th Edition, Vol.- I, Pearson. ((Chapters-8,27) 25
- 3. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part A. Structure and Mechanisms; 5th ed.; Springer: New York, 2007
- 4. M. K. Jain and S.C. Sharma 'Modern Organic Chemistry', 3rd Edition, Visal Publishing Company Co. (Chapter-22)
- 5. K.S Tewari and NK Vishnoi 'Organic Chemistry', 3rd Edition, Vikas Publishing House (Chapter-19)
- 6. B.S. Bahl 'Advanced organic Chemistry'
- 7. McMurry, J. E. Fundamentals of Organic Chemistry; Cengage Learning, 2010.
- 8. Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry; Oxford University Press, USA, 2012.
- 9. Wade, L. G. Organic Chemistry; Pearson Education India, 2008.
- 10. Bruice, P. Y. Organic Chemistry; Pearson, 2017.
- 11. Norman, R. O. C.; Coxon, J. M. *Principles of Organic Synthesis*; Routledge, 2017. 10. Pine, S. H. *Organic Chemistry*; Tata McGraw-Hill, 2014.
- 12. Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry; John Wiley & Sons, 2008.
- 13. Pine, S. H. Organic Chemistry; 5th ed.; McGraw-Hill, 2006.
- 14. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. *Vogel's Textbook of Practical Organic Chemistry*; 5th ed.; Pearson Education, 2005.
- 15. F. G. Mann and B. C. Saunders, 'Practical Organic Chemistry' *Fourth Edition, Pearson* Education.
- 16. V.K.Ahluwalia and S. Dhingra ' Comprehensive Practical Organic Chemistry' Universities
- 17. A. I. Vogel, 'A Text Book of Practical Organic Chemistry', Longman.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme/ Discipline	B.Sc. CHEM	B.Sc. CHEMISTRY (Honours)					
Course Name	Physical C	hemistry I					
Type of Course	DSC						
Course Code	M24CH4D	M24CH4DSC201					
Course Level	200-299						
Course Summary	This course ionic and pl	provides a co nase equilibri	omprehensive a and differen	e understanding nt types of solu	g of the gaseous tions.	state,	
Semester	4		Credits		4		
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours	
	PProdein	3		1		75	

CO	Expected Course Outcome	Learning	PSO
No.		Domains *	No.
1	Interpret the properties of real and ideal gases and	An	1,4
	calculate the critical constants theoretically.		
2	Distinguish the different types of molecular velocities	An	1,3
	and define various terms involved on molecular		
	motion.		
3	Utilize the concepts of acids, bases and buffer solutions	А	1,2,3,4
	to calculate ionic product, pH, and ionic strength.		
4	Distinguish and interpret different phases co-existed in	Е	1,4
	phase diagram.		
5	Understand different types of solutions and its properties.	E, S	1,4
	Students apply the laws to describe the properties of		
	solutions.		
*Romor	nber (K) Understand (U) Apply (A) Analyse (An) Evaluate (E)	Create (C) Sk	ill (S)

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Uni ts	Course description	Hrs	CO No.
1. Gaseous state(15 Hours)	1.1	Deviation of real gases from ideal behaviour: causes of deviation, van der Waals equation of state for real gases- derivation and application in explaining real gas behaviour- Virial equation of state, van der Waals equation expressed in Virial form- Boyle temperature. Critical phenomena and Andrew's isotherms of CO ₂ , continuity of states, critical constants and their calculation from van der Waals equation.	5	1

			r	
	1.2	Maxwell distribution law of molecular velocities (graphical representation – derivation not required), Temperature dependence of the Maxwell distribution, molecular velocities- most probable, average and root mean square velocities (no derivation)	5	2
	1.3	Collision properties: Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules (No derivation). Relation between mean free path and coefficient of viscosity.	5	2
2. Ionic and	2.1	Introduction – Concepts (Lowry-Bronsted and Lewis concept) of acids and bases, relative strength of acid-base pairs, influence of solvents, Dissociation constants – acids, bases, and polyprotic acids. Ostwald's dilution law.	3	3
phase equillibria (15 Hours)	2.2	Degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water- pH. Effects of solvents on ionic strength.	3	3
	2.3	Buffer solutions – Mechanism of buffer action, Henderson equation. Hydrolysis of salts (concepts only).	3	3
	2.4	The phase rule (no-derivation). One component system – water and sulphur systems. Two component systems- Simple Eutectic; Lead Silver system. Application to metallurgy Pattinson's process.	6	4
	3.1	Introduction – Binary liquid solutions – Raoult's law- ideal and non-ideal solutions, Vapour pressure – composition and temperature – composition curves of ideal and non-ideal binary liquid solutions.	5	5
3. Solutions (15 Hours)	3.2	Critical solution temperature (CST). Solubility of gases in liquids – Henry's law and applications. Distribution of a solute between two solvents– Nernst distribution law.	5	5

	3.3	Colligative properties of dilute solutions – vapour pressure lowering, Boiling point elevation and freezing point depression. Molar mass determination (no derivation) -related problems – Osmotic pressure –laws of osmotic pressure – Reverse osmosis – purification of sea water. Abnormal molecular masses – van't Hoff factor – Degree of association and Degree of	5	5
		dissociation.		
4. Practicals (30 Hrs)	4.1	 Determination of CS1 of Phenol water system Effect of KCl/Succinic acid on Critical Solution Temperature of phenol water system. Determination of unknown concentration of KCl/Succinic acid using CST method. Transition temperature of salt hydrates. (Sodium thiosulphate, sodium acetate). Construction of phase diagram of simple eutectics (Naphthalene-Biphenyl System) Determination of mass of solvent/molecular mass of solute using transition temperature. Molecular weight determination by Rast's method. (Using naphthalene, camphor or biphenyl as solvent and acetanilide, p- dichlorobenzene etc. as solute.) 	30	4,5
5.	6	Teacher specific Contents (To be evaluated internally)		
Teaching and Learning Approach	Classr transa	room Procedure (Mode of action) Lecture, Practical, Discussion		

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

References

1. Puri, Sharma and Pathania, "Principles of Physical Chemistry", 48th Edition, Vishal

Publishing Company

- 2. F Daniels and R A Alberty, "Physical Chemistry", 3rd ed. John Wiley and Sons, Inc., New.
- 3. Barrow, G.M. "Physical Chemistry", Tata McGraw-Hill (2007).
- 4. Castellan, G.W. "Physical Chemistry", 4th Ed. Narosa Publishing House (2018).
- K. L. Kapoor, "A Textbook of Physical chemistry", Volume 5, 4th edition, Macmillan India Ltd.,
- D. A. McQuarrie, J. D. Simon, Physical Chemistry A molecular Approach, Viva Books Pvt. Ltd.
- 7. Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing House.
- 8. I.N. Levine, Physical Chemistry, Tata McGraw Hill

Suggested Readings

- 1. R P W Atkins, "Physical Chemistry", Oxford University Press (12th Edition)
- R J Silby and R A Alberty, M G Bawendi "Physical Chemistry", (4th Edition) John Wiley & Sons
- Kotz, J.C., Treichel, P.M. & Townsend, J.R., General Chemistry, Cengage Learning India Pvt. Ltd. New Delhi (2009).
- 4. Glasstone and Lewis, Elements of Physical Chemistry, Macmillan

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme/ Disciple	B.Sc. CHE	B.Sc. CHEMISTRY (Honours)					
Course Name	Chemistry	of Materials	S				
Type of Course	DSE	DSE					
Course Code	M24CH4D	M24CH4DSE200					
Course Level	200-299	200-299					
Course Summary	This course different m	e provides a c aterials	comprehensiv	e understandin	g of the various	s aspects of	
Semester	4	4 Credits 4 Total					
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours	
	Approach	4				60	
Pre- requisites, if							

Disciple any

Mar Athanasius College (Autonomous), Kothamangalam

FYUGP SYLLABUS

B.Sc. CHEMISTRY (Honours)

СО Learning **Expected Course Outcome** PSO **Domains** * No. No Describe the structure and properties of metals and 1 U 1,2 ceramics and its important applications. Understand the concept of polymers, different 2 Ap 1,2,5 polymerization technique, classification properties and applications of important polymers Will understand different classes of composite, 3 An 1,2 reinforcement methods, fillers and their applications To learn about important biomaterials specifically 4 S 1.2.5 smart materials and their mode of interaction to the cells. The toxicity of the biomaterials can be understood. To learn about different classification of 5 U 1,2 semiconductors, its property and function

COURSE OUTCOMES (CO)

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Uni	Course description	Hrs	CO
	ts			No.
	1.1	Metals:Metallic bonding; structure of materials: fundamentals of crystallography, crystal systems, Bravais lattices, unit cells, primitive cells, crystallographic planes and directions; structures of metals, stainless steels, cobalt based alloys,	7	1

		titanium based alloys,		
1.				
Metals and				
ceramics:				
		Introduction to ceramic materials; Classification of		
	1.2	ceramics, Crystal structure and bonding of common	0	1
	1.2	advanced ceramic materials; Atomic defects in	8	1
		ceramics: intrinsic and extrinsic point		
		defects, mechanical behaviour of ceramics, Glass		
		and glass ceramics, Preparation of ceramics,		
		electrical, dielectric and magnetic properties of		
	15	ceramics ASIUS		
		Polymers: Introduction and classification.		
		Polymerization reactions - Addition and		
	1 1	condensation Ring opening polymerization		
	2.1	and block conclumers. Machanism of free	7	2
		and block copolymers, Mechanism of free		
		radical, cationic and anionic polymerizations,		
		Nomenclature, Tacticity, Co-polymerization-		
	1	random, alternating, Glass transition and		
		melting temperatures, crystallinity of polymers,		
		Polymerization Techniques: Bulk, Solution,		
		Suspension and Emulsion polymerizations		
2.				
Polymers		Molecular weight of polymers: Number		
		average, weight average and viscosity average		-
	2.2	molecular weights of polymers, Bio-polymers,	8	2
		Bio-degradable polymers. Fire retardant /		
		Thermally stable polymers Conducting		
		Polymers Applications of plastics		
		thermosatting thermosoftoning Eibres Natural		
		and Southestic multiple Environmental 1		
		and Synthetic rubbers, Environmental nazards		
		and biodegradability of polymers. Recycling of		
		plastics		

	3.1	Composite :Definition of composites,	8	3
		Classification of composites; General		
		characteristics of reinforcement- classification,		
		Polymer matrix composites: Thermoplastic and		
		thermosetting resins; Commonly used matrix		
		reinforcement system; Fibre, Flake and particulate		
3.		reinforced composites, Function of matrix,		
Composite		Function of fibers, Polymer-fibre interface, Factors		
		influencing the performance of composite,		
		Coupling agents, Bonding agents, Short fiber		
		composites, Continuous fiber composites: Analysis		
		of long fiber composites, Nanocomposites:		
		Nanoparticle dispersion in polymer		
	15	matrix, Applications of composites		
	3.2	Commonly used matrix reinforcement system;	7	3
		Fibre, Flake and particulate reinforced composites,		
		Function of matrix, Function of fibers, Polymer-		
		fibre interface, Factors influencing the performance		
		of composite, Coupling agents, Bonding agents,		
		Short fiber composites, Continuous fiber		
		composites: Analysis of long fiber composites,		
	1	Nanocomposites: Nanoparticle dispersion in		
		polymer matrix, Applications of composites		
	4.1	Biomaterials:	8	4
		Introduction and importance of biomaterials; Types		
		of biomaterials: Metallic, polymeric, and composite		
		biomaterials. Classification according to the		
		physiological response of biomaterials: bioinert,		
		bioactive, and bioresorbable biomaterials; Surface		
4.		modifications; Surface-protein interactions;		
Biomaterials:		Material-cell interactions: biocompatibility and		
		rejection; Implants and infection; Testing of		
		biomaterials: In Vitro and in vivo assessment of		
		tissue compatibilityApplications of biomaterials in		
		Tissue engineering, Drug delivery, Biosensing and		
		Diagnostics.		

	4.2	Toxicology: cytotoxicity, systemic effects,	7	4			
		genotoxicity, carcinogenicity, sensitization &					
	response,						
		Smart biomaterials: Stimuli-responsive polymers					
		(pH, temperature, light) and their applications as					
		biomaterials.					
		Tissue engineering: Introduction to the basic					
	concepts of scaffolds in tissue engineering.						
		Functions and requirements of scaffolds in tissue					
		engineering.					
5	2	Teacher specific contents (To be evaluated internally)					
	Clas	sroom Procedure (Mode of transaction)					
Teaching and Learning Approach	Lect	ure, Practical, Discussion					
		ONLEDGE IS POSIL					

MODE OF ASSESSMENT				
A. Continuous Comprehensive Assessment	B. End Semester Examination			
(CCA)	Theory Total = 70 marks, Duration 2 hrs			
Theory $Total = 30$ marks	Part A (Short answer) -10 out of $12 \ge 20$			
Quiz, Test Papers, seminar	marks			
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks			
	Part C (Long essay) -2 out of $4 \ge 10 = 20$			
	marks			

- 1. P. Boch, J-C. Nièpce, Ceramic Materials: Processes, Properties, and Applications, Wiley-ISTE, 2007.
- 2. M.N. Rahaman, Ceramic Processing and Sintering, 2nd ed.,, CRC press
- 3. F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, 2008.
- 4. J. Beddoes, M.J. Bibby, Principles of Metal Manufacturing Processes, Elsevier, 2003.

- 5. R.M. Jones, Mechanics of Composites, 2nd ed., Taylor & Francis, 1999.
- T. G. Gutowski, (Ed.) Advanced Composites Manufacturing, John Wiley & Sons, New York 1997.
- P.M. Ajayan, L. Schadler, P.V. Braun Nano Composite Science and Technology, Wiley VCH, 2003.
- 8. E. Fitzer, L.M. Manocha, Carbon Reinforcement and Carbon/Carbon Composites, Springer-Verlag, Heidelberg, New York, 1998.
- 9. K.K. Chawla, Ceramic Matrix Composites, Kluwer Academic Publishers, 2003.
- J.C. Seferis, L. Nicolais, (Eds.) The Role of the Polymeric Matrix in the Processing and Structural Properties of Composite Materials, Plenum Press, New York 1983.
- 11. B. Ratner, A. Hoffman, F. Schoen, J Lemons, Biomaterials Science: An introduction to materials in Medicine. 2nd edition, Academic Press, 2004.
- C. T. Laurencin, L. S. Nair, Nanotechnology and Tissue Engineering, The Scaffol, CRC Press, 2008
- 13. S. Ramakrishna, T. S. Sampath Kumar, Biomaterials: A nano approach.CRC press, 2010
- 14. I. Galaev, Bo Mattiasson, Smart Polymers: Applications in Biotechnology and Biomedicine, 2ndEdition, CRC Press,2007
- 15. M. De Villiers, P Aramwit and G S. Kwon, Nanotechnology in drug delivery. Springer, 2009.
- J.B. Park and J.D. Bronzino. Biomaterials: Principles and Applications. CRC Press. 2002. ISBN: 0849314917
- K.C. Dee, D.A. Puleo and R. Bizios. An Introduction to Tissue-Biomaterial Interactions. Wiley 2002. ISBN: 0-471-25394-4.
- 18. B. Rolando (Ed.) Integrated Biomaterials Science. Springer. 2002. ISBN: 0-306-46678-3
- 19. P. Gosh, Polymer Science and Technology, Mc-Graw Hill, 2002.
- 20. Billmeyer F.W., Text book of polymer science, Jr.John Wiley and Sons, 1994.
- 21. Gowariker V.R., Viswanathan N.V. and Jayader Sreedhar, Polymer Science, Wiley Eastern Ltd., New Delhi

Further Reading

- 22. A. Kirkland and J. Hutchison, Nano characterization, RSC publishers, 2007.
- 23. N. Chawla, K.K. Chawla, Metal Matrix Composites, Springer-Verlag, 2006
- 24. S. Dumitriu, 2nd edition, Polymeric Biomaterials. Marcel Dekker, 2002
- 25. S. Li, A. Tiwari, M. Prabaharan and S. Aryal, Smart Polymer Materials for Biomedical Applications (Materials Science and Technologies), Nova Science Publishers Inc, 2010

- T.S. Hin (Ed.) Engineering Materials for Biomedical Applications. World Scientific. 2004. ISBN 981-256061-0
- 27. M. Rubinstein, R.H. Colby, Polymer Physics, Oxford University Press, 2003.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS							
Programme	B.Sc. CHEMISTRY ()	Honours)						
Course Name	Medicinal Chemistry							
Type of Course	DSE	DSE						
Course Code	M24CH4DSE201							
Course Level	200-299							
Course Summary	Medicinal Chemistry is a multidisciplinary field at the intersection of chemistry, pharmacology, biology, and pharmaceutical science. This course focuses on the design, synthesis, and development of pharmaceutical drugs. The primary goal is to understand the chemical principles underlying the creation of effective and safe medications for the treatment of diseases							
Semester	4	Credits				Total		
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours		
		4		0		60		

CO No.	Expected Course Outcome	Learning Domains	PO No			
		*				
1	Describe the evolution of medicinal chemistry with special reference to allopathic medicines	U	1, 2			
2	Acquire sufficient knowledge and basic understanding in molecular pharmacology familiarizing with medicinal terminology	U	1, 2			
3	Analyze the various drug targets and their relationship with therapeutics.	An	1, 2			
4	Evaluate the role of enzymes as drug targets and understand the action of membrane transporters and channels.	Е	1, 2			
5	Explain the mechanism of action and uses of antibiotics, antiviral, anticancer and cardiovascular drugs.	An	1, 2			
6	Illustrate different phases of drug metabolism and different drug delivery systems.	А	1,2,3			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
1	1.1	Overview of Medicinal Chemistry: Definition and scope of medicinal chemistry, Important milestones of allopathic medicinal chemistry	3	1
Introductio n to Medicinal	1.2	General concepts of toxicity, teratogenicity & carcinogenicity, LD50, ED50, MIC- anti infectives, habituation & addiction of narcotic analgesics and barbiturates	8	1
Chemistry	1.3	Basics of Molecular Pharmacology: ADME (Absorption, Distribution, Metabolism and Excretion) – A general outline, ADME of metformin (Antidiabetic Drug), Methotrexate (Anticancer Drug)	4	2
	2.1	Introduction to Drug Targets: Definition and importance of drug targets, Types of drug targets- Proteins, nucleic acids, Cellular structure, Relationship between drug target and therapeutic effects (DNA binders- application of C2B10 for Drug Design)	3	3

2 Drug Targets and Receptors	2.2	Types of Receptors in Drug Action: Introduction to receptors and signalling, Types of receptors- G Protein coupled receptors, Ionotropic receptors, Metabotropic receptors and Kinase linked receptors.	4	3	
	2.3	Enzymes as Drug Targets: Enzymes: active sites, mechanism of catalysis, Enzyme inhibitors, Enzyme selectivity	4	4	
	2.4	Membrane Transporters and Channels: Active transporters and passive transporters.	4	4	
3 Medicinal	3.1	Antibiotics- Classification, mechanism of action and therapeutic uses- Penicillin, Cephalosporins, Quinolones, Aminoglycosides. Structure Activity Relationship of penicillin	5	5	
Chemistry of Major Drug	3.2	Antiviral drugs- mode of action and therapeutic uses of amatidine and ribavirin	2	5	
Classes	3.3	Anticancer Drugs: Role of alkylating agents, antimetabolites and folate antagonists in the treatment of cancer. Carcinolytic antibiotics and mitotic inhibitors. Plant derived drugs- vincristine, taxol. Hormones and their antagonists	4	5	
	3.4	Cardiovascular Drugs: Cardiotonic drugs: cardiac glycosides-their chemistry digoxin and digitoxin, Calcium channel blockers-verapamil, β -blockers-propranolol	4	5	
4	4.1	Drug Metabolism and Pharmacokinetics: Phases of Drug Metabolism (Phase I and II)	5	6	
Advanced Topics in Medicinal Chemistry	4.2	Drug Delivery Systems: Introduction to Passive targeting and active targeting, Introduction to molecular-level drug delivery methods- Nanoparticles, Liposomes, Micelles, Dendrimers and Carbon nanotubes. Gene therapy	5	6	
	4.3	Case Studies: Analysis of Successful Drug Development Cases (Non evaluative)	5	6	
5		Teacher specific contents			
		(To be evaluated internally)			
Teaching and Learning Approach		 Lecture (Chalk& Board, PowerPoint presentation) Group Discussion Peer teaching Demonstration of experiments 			

A. Continuous Comprehensive	B. End Semester Examination
Assessment (CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total $= 30$ marks	Part A (Short answer) -10 out of $12 \times 2 = 20$ marks
Quiz, Test Papers, seminar	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
_	Part C (Long essay) -2 out of $4 \ge 10 = 20$ marks

- 1. G. Patrick, Medicinal Chemistry, BIOS. 2001.
- 2. A. Kar, Medicinal Chemistry, New Age International, 2007.
- 3. Sriram , P. Yogeswari, Medicinal Chemistry, Pearson Education India, 2010.
- 4. T. Nogrady, D.F. Weaver, Medicinal Chemistry, Oxford University Press, 2005.
- 5. W.O. Foye, T.L. Lemke, D.A. Williams, Principles of Medicinal Chemistry, 4thEdn., Williams & Wilkins, 1995.
- 6. J.P. Remington, Remington's Pharmaceutical Sciences, Vol.13, , 19th Edn., Mack, 1990.
- 7. K. D. Tripathi, Essentials of Medical Pharmacology, 6th Edn., Jaypee, 2008
- 8. L.S. Goodman, A. Gillman, The Pharmacological Basis of Therapeutics, 10thEdn., McGraw Hill, 2001.
- 9. S.S. Kadam, Principles of Medicinal Chemistry, Vol.I& II, Pragati Books, 2008.
- C.O. Wilson, J.M. Beale, J.H. Block, Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th Edn., Lippincott Williams and Wilkins, 2010
- 11. Foye's Principles of Medicinal Chemistry.

SHANAS	USCO A
	-

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme	B.Sc. CHEMIS	TRY (Hone	ours)	and a			
Course Name	Chemistry in D	aily Life	31 F.	A			
Type of Course	SEC	SEC					
Course Code	M24CH4SEC20	M24CH4SEC200					
Course Level	200 - 299	200 – 299					
Course Summary	This course cover formulation along practical skills in students for roles	This course covers hand care, nail, personal hygiene, and oral care product formulation along with an introduction to Analytical Chemistry. Emphasizing practical skills in product formulation and analytical techniques, it prepares students for roles in the cosmetic and pharmaceutical industries					
Semester	4 Credits 3						
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours	
		3				45	
Pre-requisites, if any							

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains*	
1	Understand the chemistry behind hand care and hygiene products	U	1
2	Skills in formulating a range of personal care and hygiene	C, S	1, 2, 4
	products, preparing them for roles in the cosmetic and		
	pharmaceutical industries.		
3	Understand the fundamentals of analytical chemistry	U	1
4	Develop skills for soil and water analysis	C, S	1, 4
*Remen	nber(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), C	reate(C), Skill	(S),
Interest	(I) and Appreciation (Ap)		

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description		CO No.
	1.1	Hand Care Products: Principles of formulation of hand sanitizers and hand wash. General Ingredients and Preparation of:	8	1,2
1. Hand and Nail Care Products		(a) Hand wash(b) Antibacterial hand wash(c) Hand sanitizer		
(15 Hours)	1.2	Nail preparation: Structure of nail, Nail lacquers, Nail polish remover. General Ingredients and Preparation of: Nail polish and nail polish remover	7	1,2
	2.1 Personal hygiene products: Total fatty matter, alkali content, and pH of soaps. Bathing soap and toilet soap. Antiperspirants and deodorants. General Ingredients and preparation of		8	1,2
2. Personal and Oral Hygiene		(a) Soaps(b) Cream Soaps(c) Liquid soaps		
Products (15 Hours)	2.2	Oral hygiene products: Common problem associated with teeth and gums. Role of herbs in oral care: Neem and clove. Principles of formulation of Oral hygiene products. Flavors and essential oils.	7	1,2
	3.1	Introduction: Introduction to Analytical Chemistry and its interdisciplinary nature. Concept of sampling.	3	3

		Importance of accuracy, precision, and sources of				
3.		error in analytical measurements.				
Analytical	3.2	Analysis of soil: Composition of soil, Concept of pH	5	4		
Chemistry		and pH measurement, Complexometric titrations,				
(15 Hours)		Chelation, Chelating agents, use of indicators.				
		a. Determination of pH of soil samples.				
		b. Estimation of Calcium and Magnesium ions as				
		Calcium carbonate by complexometric titration.				
	3.3	Analysis of water: Definition of pure water, sources	7	4		
		responsible for contaminating water, water sampling				
		methods, and water purification methods.				
		Determination of all availates and all all all all all all all all all al				
		a. Determination of pH, acidity, and alkalinity of a				
		water sample.				
		Determination of the Hardness of water.				
4	Teacher specific Contents					
т	(To be evaluated internally)					
	Classro	om Procedure (Mode of transaction)				
Taaching	•	Lecture Sessions, (Chalk & Board, PowerPoint presenta	tion)			
and	•	Interactive Sessions				
anu Loorning	 Visual aids like videos and models to enhance understanding 					
Annroach		Peer discussions.	0			
Approach		Hands- On experience				
		Trands on experience.				

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) -4 out of $6 \ge 5 = 20$ marks
	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks

- 1. Butler, H. (2000), Poucher's Perfumes, Cosmetic and Soap, Springer
- 2. Flick E W. (2001), Cosmetic and toiletry formulations, Noyes Publications, New York.
- Skoog, D.A. and Leary, J.J., Instrumental Methods of Analysis, Saunders College Publications, New York, 1992
- Skoog, D.A.; West, D.M., and Holler, F.J. Fundamentals of Analytical Chemistry 6th Ed., Saunders College Publishing, Fort Worth, 1992
- 5. Harris, D. C. Quantitative Chemical Analysis 7th Ed., W. H. Freeman and Co., New

York, 2007

the second secon	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme	B.Sc. CHEMISTRY (Honours)						
Course Name	Environmental C	hemistry					
Type of Course	VAC						
Course Code	M24CH4VAC200						
Course Level	200 - 299	200 – 299					
Course Summary	"Environmental Chemistry" explores the interactions between chemicals and the environment. It examines the sources, behaviour, and effects of pollutants in air and water. The course emphasises strategies for monitoring, mitigating, and preventing environmental degradation and emission of greenhouse gases. Students learn about the impact of human activities on ecosystems and the role of chemistry in addressing global environmental challenges. Overall, the course aims to foster an understanding of the interplay between chemistry and the environment, enabling the development of sustainable solutions for a cleaner						
Semester	4		Credits		3	Total	
Course Details	Learning Approach	Lecture 3	Tutorial	Practical	Others	Hours 45	
Pre-requisites, if any		OWLEDGE	IS POWER			-	

CO No.	Expected Course Outcome	Learning Domains*	PSO No.
1	Communicate effectively about environmental chemistry	U	1, 5
	topics, considering diverse audiences and stakeholders		
2	Describe strategies for the remediation and	U, An, A	1, 5
	purification of contaminated soil, air, and water		
3	Apply principles of green chemistry to propose sustainable	A, C	1, 5
	solutions for minimizing environmental contamination		
4	Discuss the basic chemical processes involved in air and	U, A	1, 5
	water pollution and global warming identifying key		
	sources.		
*Remem	ber(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Cr	eate(C), Skill(S	5),
Interest			

COURSE CONTENT

Module	Units	Course Description	Hrs	CO No.
1.	1.1	Classification of the Environment- Troposphere, Stratosphere, Mesosphere, Thermosphere, Exosphere, Hydrosphere, Lithosphere, Biosphere	5	1
Environment and Pollution (15 Hours)	1.2	Water Contamination Causes, Categories Of Water Pollution, The Long-Term Consequences of Water Pollution, Basic idea of waste water purification and disinfection	5	2,3,4
	1.3	Air Pollution: Particulates, Smog, Acid rain, Ozone Depletion- Causes, Basic idea of Air Quality Improvement methods.	5	2,3,4
2.	2.1	Greenhouse Gases and Global Warming: Natural Occurring Greenhouse Gases, Anthropogenic Greenhouse Gases, Other Greenhouse Gases, Ozone, Global Warming Potential (GWP), Emission Metrics, Influence of Technology on Global Warming.	8	4
Greenhouse Gases (15 Hours)	2.2	Schemes to reduce greenhouse gases: Capture and Storage of Carbon Dioxide, Sequestration of CO ₂ . Other Schemes to Reduce Greenhouse Gases, Removing CO ₂ from the Atmosphere: Direct Air Capture, Carbon Dioxide Emissions in the Future	7	2,4
3. Renewable Energy	3.1	Renewable Energy Technologies: Hydroelectric, Wind, Solar, Geothermal, and Marine Energy and Their Storage, Energy from Moving Water without Dams. Fuel Cells.	6	3
Technologies and Sustainable Materials (15 Hours)	3.2	Biomass Energy: Biofuels and Their resources, Decarbonization with Biomass Utilization, Conversion of Biomass to Other Fuels- Ethanol Fuel, Biodiesel Fuel, Fuel from Algae. Biogas	6	3
	3.3	Sustainable Materials: Environmental Effects of Mining and Mineral Extraction, Sustainable Utilization of Geospheric Mineral Resources- Metals and Nonmetal Mineral Resources	3	3

Content for Classroom transaction (Units)

4	Teacher specific Contents
4	(To be evaluated internally)

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	 Lecture Sessions, (Chalk & Board, PowerPoint presentation) Interactive Sessions Visual aids like videos and models to enhance understanding. Peer discussions. Field visits and case study.

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) -4 out of $6 \ge 5 = 20$ marks
	Part C (Long essay) -2 out of $4 \times 10 = 20$
/	marks

- 1. A. K. De, Environmental Chemistry. New age International Ltd., 8th Edition 2016.
- G. Tyler Miller, Scott Spoolman, Living in the Environment. Tomson Brooke/Cole, 20th Edition, 2020.
- 3. N. Manivasakam, Physico-Chemical Examination of Water, Sewage and Industrial Effluents. Pragati Prakashan 2008.
- 4. R. K. Khitoliya, Environmental Pollution Management & Control for Sustainable Development. S.Chand & Company Ltd., 2004.
- 5. S. Mitra and B. B. Kebbekus, Environmental Chemical Analysis. CRC Press, 1998.
- 6. S. S. Dara and D. D. Mishra, A Textbook of Environmental Chemistry and Pollution Control. S. Chand & Company Ltd., New Delhi 2006.
- R. A. Malaviya, Environmental Pollution and its Control under International Law. Chugh Publications 1987.
- Pramod Singh, Environmental Pollution and Management. Chugh Publications 1985.
- G. K. Ghosh, Environmental Pollution A Scientific Dimension. Ashish Publishing House, 2008.
- Nelson L. Nemerow, Industrial Water Pollution- Origins, Characteristics, and Treatment. Addison-Wesley Pub. Co., 1978.
- 11. James W. Moore and S. Ramamoorthy, Organic Chemicals in Natural Waters-Applied Monitoring and Impact Assessment. Springer-Verlag, 2012.

- 12. O. Hutzinger, I. H. Van Leyveld and B. C. J Zoeteman. Aquatic Pollutants -Transformation and Biological Effects. Elsevier, 1978.
- 13. B.K Sharma, Environmental Chemistry. GOEL Publication, Meerut, India, 2014.
- J. Shivananda, Human Rights: Concepts and Issues. Alfa Publications, New Delhi, 2006.
- 15. M. Rajawat, Human Rights and Dalits. Anmol Publications, New Delhi, 2006.
- 16. R. Kaushal, Women & Human Rights in India. Kaveri Books, New Delhi, 2000.
- 17. A. Bajpai, Child Rights in India: Law, Policy, and Practice. Oxford University Press; New Delhi; 2006.
- M.R. Biju, Human Rights in a Developing Society. Mittal Publications, New Delhi, 2005.
- V.K. Ahluwalia, Green Chemistry: A Textbook. Alpha Science International, 2013.
- 20. V.K. Ahluwalia, Green Chemistry: Environmentally Benign Reaction. CRC, Taylor & Francis, 2008.
- 21. A.P. Dicks, Green Organic Chemistry in Lecture and Laboratory, CRC Press, University of Toronto, Ontario, Canada, 2012.

Y	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme/	B.Sc. CHEMISTRY (I	Honours)					
Disciple							
Course Name	Physical Chemistry						
Type of Course	DSC C/Minor (For students who have opted Physical Sciences and Geology as Main)						
Course Code	M24CH4DSC202						
Course Level	200-299						
Course Summary	This course provides the student a thorough knowledge about solids and surface chemistry. It also gives basic information on green chemistry along with an introduction on spectroscopy.						
Semester	4 WEW		Credits		4	Total	
	1	Lecture	Tutorial	Practical	Others	Hours	
Course Details	Learning Approach	am ₃ ngt		1		75	
Pre-requisites, if any			1			•	

CO No.	Expected Course Outcome	Learning Domains *	PSO No			
1	Build a perspective on adsorption and different adsorption isotherms.	U	1			
2	Evaluate the properties and applications of colloids	E	1,3,4			
3	Describe the basic principles of Spectroscopic techniques like UV/ Vis, IR and NMR	U	1,4			
4	Discuss the importance of green chemistry and green approaches	U	1,5			
*Rem Skill	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
1 Surface chemistry and colloids	1.1	Adsorption – types of adsorption of gases by solids, factors influencing adsorption, Freundlich adsorption isotherm – Langmuir adsorption isotherm (derivation not required).	3	1
	1.2	True solution, colloidal solution and suspension. Classification of colloids: Lyophilic, lyophobic, macromolecular, multimolecular and associated colloids with examples. Purification of colloids by electrodialysis and ultrafiltration.	4	2
	1.3	Properties of colloids: Brownian movement – Tyndall effect – Electrophoresis. Origin of charge and stability of colloids – Zeta potential – Coagulation - Hardy Schulze rule – Protective colloids – Gold number. Emulsions.	5	2
	1.4	Applications of colloids: Delta formation, medicines, emulsification, cleaning action of detergents and soaps.	3	2
	2.1	Interaction of electromagnetic radiation with matter, electromagnetic spectrum, quantization of energy, electronic, vibrational and rotational energy levels, Boltzmann distribution of energy (formula only).	3	3
	2.2	UV-Visible Spectroscopy: Introduction – Beer- Lambert's law – Electronic transitions in molecules ($\sigma \rightarrow \sigma^*$, $n \rightarrow \sigma^*$, $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$) – molar extinction coefficient and its importance. Chromophore and auxochrome – Red shift and blue shift.	4	3
2 Introduction to Spectroscopy	2.3	<i>IR Spectroscopy:</i> Introduction – vibrational degrees of freedom, types of vibrations – symmetric and asymmetric stretching and bending. Group frequency concept – Characteristic stretching frequencies of O-H, N-H, C-H, C=C, C=N and C=O functional groups – Fingerprint region in IR spectra	4	3
	2.4	<i>NMR Spectroscopy:</i> Introduction - Chemical shift and spin-spin coupling - Application in elucidating the structure of ethanol, dimethyl ether, propanal and acetone (detailed study not required)	4	3
3				4

New vistas in chemistry	Green Chemistry: Definition and Importance of green chemistry, Limitations/ Obstacles in the pursuit of the goals of Green Chemistry3.1Twelve principles of Green Chemistry3.2Twelve principles of Green Chemistry. Prevention of Waste/ by-products; Atom Economy 	4 3 5	4
	3.4 Microwave assisted reactions, green synthesis of Ibuprofen	3	4
4.Practicals	 Determination of Partition coefficient of a non volatile solute. Transition temperature of salt hydrates, eg. Sodium thiosulphate, Sodium acetate etc. Critical solution temperature of phenol water system. Heat of Solution KNO3, NH4Cl Heat of neutralization Determination of equivalent conductance of an electrolyte. Conductometric titrations is Fe2+ vs. Cr2O72-and Fe2+P vs. KMnO4 Determination of molecular weight by Rast's method. (using naphthalene, camphor or biphenyl as solvent and acetanilide, p-dichlorobenzene etc. as solute) Kinetics of simple reactions, eg. Acid hydrolysis of methyl acetate 	30	
5	Teacher specific Contents (To be evaluated internally)		
Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture Discussion Lecture Sessions, Interactive Sessions including discussion and experiments to engage students.	ons, demo	onstrations,

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory $Total = 25$ marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of $6 \ge 5 = 20$ marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$ marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

- 1. B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 2. F. Daniels, R. A. Alberty, *Physical Chemistry*, 5th Edn., John Wiley and Sons, Canada, 1980
- P. S. Kalsi, Applications of Spectroscopic Techniques in Organic Chemistry, 6th Edn., New Age International (P) Ltd., New Delhi, 2004
- 4. C. N. Banwell, E. M. Mc Cash, Fundamentals of Molecular Spectroscopy, 4th Edn.,
- 5. McGraw–Hill publishing Company Limited, New Delhi, 2002
- 6. V. K. Ahluwaliya, *Green Chemistry*, Narosa Publishing House, New Delhi, 2011.
- 7. Gurdeep Raj, Photochemistry, 6th Edn, Goel Publishing House, 2014.
- 8. G. K. Vemulapalli, Physical Chemistry, Prentice-Hall of India Pvt. Ltd., 1997.

SEMESTER V

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B.Sc. CHEMISTRY (Honours)
Course Name	Physical Chemistry II
Type of Course	MAJOR
Course Code	M24CH5DSC300
Course Level	300-399

Course Summary	This course covers a detailed understanding of the solid state chemistry and its importance in various aspects. The course introduces photochemical laws and different photochemical processes. It also explains thermodynamical principles and its different states.					
Semester	5	Credits 4 Tradition				
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours
		3		1		75
Pre-requisites, if any						

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Illustrate the basic aspects of ionic solids and identify the crystal structure.	An	1,4
2	Explain the types of defects, causes and semiconductor properties in ionic solids.	Е	1
3	Evaluate different symmetry operations and elements. Analyze different molecular point groups based on symmetry elements	An,C	1,3,4
4	Remember the fundamental principles of photochemistry and photochemical processes and explain the nature of different photochemical reactions.	U	1
5	Explain the fundamental laws of thermodynamics and its application in isothermal, adiabatic and Joule-Thomson expansion processes.	U	1,4
6	Apply the principles of chemical thermodynamics to thermochemical processes and systems of variable compositions.	А	1,2,4
7	Describe the entropy and free energy criterion for equilibrium and spontaneity and explain third law of thermodynamics.	А	1
*Remen Interest	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E (I) and Appreciation (Ap)), Create (C), S	kill (S),

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
		UNIT 1: SOLID STATE (15 HRS)		

	1.1	Anisotropy in crystals, Laws of Crystallography – Law of constancy of interfacial angles, Law of rational indices. Weiss and Miller indices. X– Ray diffraction by crystals, Bragg's law	4	1	
1	1.2	Structure of ionic compounds of the type AX (NaCl, CsCl, ZnS) and AX2 (CaF2, Na2O) Defects in crystals – stoichiometric and non-stoichiometric defects, extrinsic and intrinsic defects. Electrical conductivity, semiconductors, n-type, p-type,	6	2	
	1.3	Symmetry of molecules-symmetry elements and symmetry operations – centre of symmetry, plane of symmetry, proper and improper axes of symmetry, molecular point groups, Determination of point groups of simple molecules	5	3	
2. Photochemistry	2.1	Laws of photochemistry-Grothus-Draper law, Stark-Einstein law. Jablonski diagram- qualitative description of fluorescence, phosphorescence, non-radiative processes (internal conversion, intersystem crossing).	3	4	
and Thermodynamic s 1(15 hrs)	2.2	Quantum yield, examples of low and high quantum yields, photochemical reactions (decomposition of HBr, isomerisation of maleic acid to fumaric acid), photosensitized reactions(photosynthesis, isomerization of 2- butene), chemiluminescence, bioluminescence.	3	4	
	2.3	Zeroth law of thermodynamics. Definition of internal energy and enthalpy. Heat capacities at constant volume (C_V) and at constant pressure (C_p), relationship between C_p , C_V and R	6	5	
		First law of thermodynamics –Mathematical statement of first law. Reversible process and maximum work. Calculation of work, heat, internal energy change and enthalpy change for the expansion of an ideal gas under reversible isothermal and adiabatic condition.			
	2.4	The Joule-Thomson effect – derivation of the expression for Joule-Thomson coefficient. Significance of Joule-Thomson coefficient, inve temperature.	rsion	3	5

	Second law:	Limitations of first law – Different		
	statements of	second law. Thermodynamic scale of		
	temperature (arnot cycle and its efficiency Carnot		
	theorem	anot cycle and its efficiency, carnot		
	Concent.			
	Concept of e	entropy – Definition and physical		
	3.1 significance. I	Entropy as a function of volume and	10	6
	temperature, E	Entropy as a function of pressure and		
	temperature. H	Entropy as a criterion of spontaneity		
	and equilibriur	n.		
3 Thermodynamics	-			
11	Gibbs and H	Helmholtz free energies and their		
	significances-	criteria of equilibrium and		
	spontaneity G	ibbs_Helmholtz equation		
	Third law of	thermodynamics statement and		
		inermodynamics-statement and		7
	determination	of absolute entropies of		'
	substances. Part	ial molar quantities – Chemical	5	
	3.2 potential – Gibb	os–Duhem equation		
	1. Heat of neu	tralization		
	2. Heat of solu	tion – KNO3, NH4Cl (Determination		
	of heat of solu	tion from solubility measurements)		
	3. Surface ten	sion - Determination of the surface		
	tension of a lic	mid		
	(Drop number	method or Dron weight method)		
4. Practicals	1 Surface tens	ion Determination of Parachor		
	4. Surface tens	ion - Determination of 1 arachor		
	values 5 Determine	ANGC II.		
	5. Determinat	ion of the composition of two liquids		
	by surface	CONCO.		
	tension measur	rements		
i.	6. Determinat	ion of CMC of surfactants by surface		
	tension			
	Measurements			
5.	T	eacher specific Contents		
	T)	o be evaluated internally)		
	Classroom Procedure (Mode of transaction)		
Taaahing and				
Learning and	Lecture Sessions	s, (Chalk & Board, Power point presentation	n)	
	Interactive Sessi	ons and simulations.	,	
Approacn	Visual aids like	videos and models to enhance understandin	σ	
	Peer discussions	races and models to emanee understanding	0.	
	I del uiscussions Laboratory avra	rimonts and hands on training		
1		monte and nanus-on danning		

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of $6 \times 5 = 20$ marks

Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \times 10 = 20$
	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

References

- 1. K. J. Laidler, Chemical kinetics, 3rdedn, Pearson education, 2004.
- 2. L V Azaroff, "Introduction to Solids", McGraw Hill.
- 3. N B Hannay, "Solid State Chemistry", Prentice Hall.
- 4. Anthony R. West, "Solid State Chemistry and its Applications", Wiley Eastern.
- 5. R. P. Rastogi, R. R. Misra, An Introduction to Chemical Thermodynamics, 6th edn., Vikas Pub. Pvt. Ltd. (2003).
- 6. S. Glasstone, Thermodynamics for Chemists, Affiliated East West Publishers.
- 7. K. L. Kapoor, "A Textbook of Physical chemistry", Volume 5, 4th edition, Macmillan India Ltd.,
- Puri, Sharma and Pathania, "Principles of Physical Chemistry", 48th Edition, Vishal Publishing Company

Suggested Readings

- 1. R P W Atkins, "Physical Chemistry", Oxford University Press (12th Edition)
- 2. J. Rajaram, J. C. Kuriakose, Chemical thermodynamics: classical, statistical and irreversible, Dorling Kindersley (India), New Delhi, ©2013
- 3. Glasstone and Lewis, Elements of Physical Chemistry, Macmillan
- 4. I.N. Levine, Physical Chemistry, Tata McGraw Hil

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS								
Programme/ Discipline	B.Sc. CHEMISTRY (H	onours)							
Course Name	Organic Chemistry-3								
Type of Course	DSC								
Course Code	M24CH5DSC301								
Course Level	300-399								
Course Summary	The course covers stereochemistry, confirmation and chemical reactions of carbohydrates and heterocyclic compounds. First module discusses the geometrical isomerism, optical isomerism and conformational analysis. Module 1 will cover the structures of carbohydrates, including monosaccharides, disaccharides, and polysaccharides along with their chemical properties and application. Final module discusses the classification and reactions of heterocyclic compounds. In the Basic Laboratory Skills module, students will develop essential techniques for organic								
Semester	5		Credits	6	4	Total			
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	- Hours			
Course Details	Learning Approach	3	× 1	1		75			
Pre-requisites,	Basic idea about isomeris	sm and type	s of isomeri	ism					

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Understand the classification, structure, chemical properties and applications of carbohydrates	U, K, A	1,2
2	Know the classification and method of synthesis of heterocyclic compounds	U, K	1, 2
3	Understand the basic concepts of stereochemistry and conformational analysis of organic molecules	U	1,2, 3
4	Develop basic skills in techniques of crystallisation, distillation and solvent extraction	S, A, I	1,3,4
5	Learn the chromatographic techniques TLC Paper Chromatography and column chromatography and Develop essential techniques for organic compound extraction purification and identification	S, A	1,3,4
	organie compound extraction, particulion, and identification.		

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT Content for Classroom Transactions (Units)

Module	Units	Course description	Hrs	CO No.
1. Stereo chemistry	1.1	Stereoisomerism - definition - classification.Introduction to molecular symmetry and chirality: examples from common objects to molecules. Axis, plane, center, alternating axis of symmetry.	2	3
	1.2	Geometrical isomerism - Cis-trans, syn-anti and E-Z notations - geometrical isomerism in unsaturated compounds, cyclic compounds, aldoximes and ketoximes- Interconversion of cis-trans isomers.	4	3
	1.3	Optical isomerism - Optical activity - conditions for optical activity - asymmetric centre - Enantiomers, Diastereomers, Meso compounds-optical isomers in glyceraldehyde, lactic acid and tartaric acid. D ,L notation- cahn-Ingold-Prelog rules – R,S notations for optical isomers with one and two asymmetric carbon atoms-erythro and threo representation. Racemisation - methods of racemisation -Resolution - methods of resolution - Asymmetric synthesis	4	3
		Conformational analysis – conformers- configuration-factors affecting the stability of organic molecules-Conformational analysis of ethane and n-butane including energy diagrams – Cyclo alkanes relative stabilities- Baeyers strain theory-conformation of cyclohexane (chair, boat and skew boat forms) - axial and equatorial bonds- ring	5	3

		flipping showing axial equatorial			
		interconversions, conformation of			
		methylcyclohexane.			
2. Carbohydrates	2.1	Classification of carbohydrates. Fischer and Haworth projections of glucose and fructose.	8	1	
		glucose and fructose – osazone formation, Tollen's reagent. Epimers, mutarotation and anomers.	0		
	2.2	Chain lengthening and chain shortening of aldoses - Kiliani- Fischer synthesis and Wohl degradation. Interconversion of aldoses and ketoses. Structure of sucrose Reactions and uses of sucrose Structure and properties of starch and cellulose (elementary idea). Industrial applications of cellulose.	7	1	
3. Heterocyclic Compounds	3.1	Classification of heterocyclic compounds, structure and aromaticity of furan, pyrrole, pyridine-	3	2	
	3.2	Synthesis and reactions of: Furan, thiophene, pyrrole (Paal Knorr synthesis and Knorr pyrrole synthesis), Pyridine (Hantzsch synthesis), Indole (Fischer Indole Synthesis), Quinoline and Isoquinoline, Bischler Napieralsky reaction, Pictet-Spengler reaction	12	2	
4. Basic Laboratory Skills	4.1	Solvent extraction – aniline from water - using ether- Crystallisation –using ethanol, and water Distillation- Purification of water and ethyl acetate	15	4	
	4.2	Chromatography - TLC – Paper Chromatography-Separation and identification- Determination of Rf value of <i>o</i> - and <i>p</i> - nitroanilines - <i>o</i> -and <i>p</i> - nitrophenol- <i>ortho</i> and <i>para</i> chloroanilines, any two amino acids- Column Chromatography	15	5	
5.		Teacher Specific Contents			
--------------	---	---	--	--	--
		(To be evaluated internally)			
Teaching and	ł	Classroom Procedure (Mode of transaction)			
Learning		Classroom lecture			

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks
	Practical Total = 35 marks; Duration- 2 hrs
ANAS	Record 10 marks, Examination 25 marks

- 1. Nasipuri, D. Stereochemistry of Organic Compounds: Principles and Applications; New Age International publishers, 2018.
- Gupta, S. S. Basic Stereochemistry of Organic Molecules; 2nd ed.; Oxford University Press, 2018.
- 3. Talapatra, S. K.; Talapatra, B. *Basic Concepts in Organic Stereochemistry*; Springer Nature, 2023.
- 4. Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; John Wiley & Sons, 1994.
- 5. Mislow, K. Introduction to Stereochemistry; Dover Publications, 2002.
- 6. Kalsi, P. S. Stereochemistry: Conformation and Mechanism; New Age International, 2008.
- 7. Finar, I. L. Organic Chemistry, Volume 2 Stereochemistry and the Chemistry of Natural Products; 5th ed.; Pearson, 2002.
- R. T. Morrison and R.N. Boyd, 'Organic Chemistry', 6th Edition Prentice Hall of India. (Chapter-18)
- 9. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part A. Structure and Mechanisms; 5th ed.; Springer: New York, 2007

- 10. L. Finar, Organic Chemistry 6 th Edition, Vol.- I, Pearson. ((Chapters-8,27) 25
- M. K. Jain and S.C. Sharma 'Modern Organic Chemistry', 3rd Edition, Visal Publishing Company Co. (Chapter-22)
- 12. K.S Tewari and NK Vishnoi 'Organic Chemistry', 3rd Edition, Vikas Publishing House (Chapter-19)
- 13. B.S. Bahl 'Advanced organic Chemistry'
- 14. McMurry, J. E. Fundamentals of Organic Chemistry; Cengage Learning, 2010.
- 15. Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry; Oxford University Press, USA, 2012.
- 16. Wade, L. G. Organic Chemistry; Pearson Education India, 2008.
- 17. Bruice, P. Y. Organic Chemistry; Pearson, 2017.
- 18. 'Vogel's Textbook of Practical Organic Chemistry' Pearson Education
 - 19. G. Mann and B. C. Saunders, 'Practical Organic Chemistry' *Fourth Edition*, Pearson Education.
- 20. V.K.Ahluwalia and S. Dhingra ' Comprehensive Practical Organic Chemistry' Universities
- 21. I. Vogel, 'A Text Book of Practical Organic Chemistry', Longman.
- 22. Skoog, D. M. West, and S. R. Crouch, Fundamentals of Analytical Chemistry 8th edn
- 23. D. Christian, Analytical Chemistry, JohnWiley and Sons
- 24. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas, Vogel's Text Book of Quantitative Chemical Analysis, 6th edn. Pearson Education 2003.
- 25. R. Gopalan, Analytical Chemistry, S. Chand and Co., New Delhi, 2003.

Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS

Programme	B.Sc. CHEMIST	B.Sc. CHEMISTRY (Honours)					
Course Name	Environmental C	hemistry and	Human Ri	ights			
Type of Course	DSC						
Course Code	M24CH5DSC302						
Course Level	300 - 399						
Course	The course outlines	the important	ce of ecosys	stems and na	tural resource	s and their	
Summary	conservation. It is	also aimed to	make the	students und	lerstand the	causes and	
~ J	consequences of v	arious types	of pollution	n and imple	ment necessa	rv control	
	measures. It also pro	ovides insight	into importa	ant human rig	pht issues and	concerned	
	acts.		P				
Semester	5		Credits		4	Total	
~						Hours	
						·	
		1.14					
Course Details	Learning	Lecture	Tutorial	Practical	Others		
Course Details	Approach	1 CUL			0 11015		
	rippiouen	4	Sal	13		60	
			10				
Pre-requisites,	The students are ex	pected to be a	aware of the	e fundamenta	als of general	, inorganic	
if any	and organic chemist	try. It is also a	desirable that	at they have	a keen unders	standing of	
	the current environn	nental problem	is.	h		÷	

CO No.	Expected Course Outcome	Learning Domains*	PSO No.
1	Understanding of ecosystems, energy resources, their conservation and associated problems	U, An, A, E	5
2	Understanding and analyzing of various types of pollution and make the disciples interpret the causes and consequences of pollutions. This may help them to take necessary steps to control the pollutions.	U, E, An, A, C	5
3	To study the green chemistry principles and the need for a sustainable development and to make an understanding of waste management and the latest green initiatives	U, A	5
4	To make aware about the human rights and concerned acts	U	5
*Remen Interest	mber(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), t (I) and Appreciation (Ap)	Create(C), Skil	ll(S),

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	Hrs	CO No.
	1.1	Ecosystems: Concept, structure and functions, Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystem. Producers, Consumers and Decomposers, Energy Flow in the Ecosystem, Food Chains and Ecological Pyramids.	5	1
1. Ecosystems and Natural Resources (15 Hours)	1.2	Renewable and Non – renewable Resources, Land resources: Land degradation, soil erosion and desertification. Forest Resources: Deforestation, Timber Extraction, Mining, Dams, and their Effects on Forests and Tribal People. Water Resources:: Use and over – exploitation of surface and ground water, floods, droughts, conflicts over water, Dams – Benefits and Problems. Mineral Resources: Use and Exploitation, Environmental Effects of Extracting and Using Mineral Resources. Energy resources: Renewable and non renewable energy sources, growing energy needs, use of alternate energy sources. Food Resources: World Food Problems, Changes Caused by Agriculture and Overgrazing, Effects of Modern Agriculture, Fertilizer-Pesticide Problems, Water Logging, Salinity.	10	1
2.	2.1	Pesticide pollution, Thermal pollution, Methods to control water pollution. Water quality parameters- pH, TDS, salinity, COD, BOD, DO, Effluent treatment methods- physical, chemical, and biological.	5	2
Environmental Pollution and Chemical Toxicology (15 Hours)	2.2	Air pollution: Primary and secondary pollutants, PAN, chlorofluoro hydrocarbons, photochemical smog, major pollutants in automobile exhaust, Effects of atmospheric pollution -acid rain, smog; green-house effect, global warming- ozone layer depletion, climate change. Regional Episodes: Bhopal gas tragedy; Endosulfan tragedy in Kasaragod.	4	2
	2.3	Radioactive Pollution: Types of reactor waste; Health hazards of radioactive fallouts; Disposal of radioactive waste (royal waste) - dilute and disperse method, delay and decay method, concentrate and contain method. Recent disposal methods like Reprocessing method, immobilization technique by vitrification. Nuclear power plants in India, Chernobyl disaster. Biochemical effects of heavy metals- As, Cd, Pb, Hg, Co and Ni. Minamata and itaiitai diseases.	6	2

	3.1 Green Chemistry:-Introduction-need of green chemistry-twelve principles of green chemistry, atom economy, sustainable development. Microwave and ultrasound assisted green synthesis (elementary idea only), green solvents- supercritical fluids.	6	3
	3.2 Solid waste Management; Zero waste concept; sanitary landfill and secured landfill, incineration, pyrolysis, biological reprocessing.	4	3
3. Green Chemistry (15 Hours)	 3.3 Fuel of the future- Hydrogen; Fuel Cells; Biofuels; Green Building; Green materials for building construction; Green Building Certification- LEED, GRIHA 	5	3
	Environmental management Standards: ISO 14000 Series; Life Cycle Analysis (LCA); Bio- mimicking; Environmental Impact Assessment (EIA); Environment Protection Act (EPA).		
4 Introduction	 4.1 4.1 4.1 Castes, Scheduled tribes, Women, Children and Minority communities Constitutional provisions and laws protecting the rights of vulnerable groups. 	4	4
4. Introduction to Human Rights	Right to Equality, Right to Freedom, Right against4.2 Exploitation.	2	4
(15 Hours)	 Salient features of some important Acts like : The Prevention of Atrocities (Against SC/ST) Act, 1989; The Domestic Violence Act, 2005; Vishakha Guidelines for Preventing Sexual 4.3 Harassment at Workplace, 1997; The Child Labour (Prohibition and Regulation) Act, 1986; The Persons With Disabilities (Equal Opportunities, Protection of Rights and Full Participation)Act, 1995. 	5	4
	4.4 Redressal mechanisms at the National and State levels: The National Human Rights Commission (NHRC), the SC/ST Commission, the National Commission for Women; the Minorities Commission	4	4
5.	Teacher specific Contents (To be evaluated internally)		

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	 Lecture Sessions, (Chalk & Board, PowerPoint presentation) Interactive Sessions Visual aids like videos and models to enhance understanding. Peer discussions. Field visits and case study

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
NAS.	Part C (Long essay) -2 out of $4 \times 10 = 20$
HAM	marks

- 1. A. K. De, Environmental Chemistry. New age International Ltd., 8th Edition 2016.
- G. Tyler Miller, Scott Spoolman, Living in the Environment. Tomson Brooke/Cole, 20th Edition, 2020.
- 3. N. Manivasakam, Physico-Chemical Examination of Water, Sewage and Industrial Effluents. Pragati Prakashan 2008.
- R. K. Khitoliya, Environmental Pollution Management & Control for Sustainable Development. S.Chand & Company Ltd., 2004.
- 5. S. Mitra and B. B. Kebbekus, Environmental Chemical Analysis. CRC Press, 1998.
- 6. S. S. Dara and D. D. Mishra, A Textbook of Environmental Chemistry and Pollution Control. S. Chand & Company Ltd., New Delhi 2006.
- R. A. Malaviya, Environmental Pollution and its Control under International Law. Chugh Publications 1987.
- Pramod Singh, Environmental Pollution and Management. Chugh Publications 1985.
- G. K. Ghosh, Environmental Pollution A Scientific Dimension. Ashish Publishing House, 2008.
- Nelson L. Nemerow, Industrial Water Pollution- Origins, Characteristics, and Treatment. Addison-Wesley Pub. Co., 1978.

- 11. James W. Moore and S. Ramamoorthy, Organic Chemicals in Natural Waters-Applied Monitoring and Impact Assessment. Springer-Verlag, 2012.
- 12. O. Hutzinger, I. H. Van Leyveld and B. C. J Zoeteman. Aquatic Pollutants -Transformation and Biological Effects. Elsevier, 1978.
- 13. B.K Sharma, Environmental Chemistry. GOEL Publication, Meerut, India, 2014.
- J. Shivananda, Human Rights: Concepts and Issues. Alfa Publications, New Delhi, 2006.
- 15. M. Rajawat, Human Rights and Dalits. Anmol Publications, New Delhi, 2006.
- 16. R. Kaushal, Women & Human Rights in India. Kaveri Books, New Delhi, 2000.
- 17. A. Bajpai, Child Rights in India: Law, Policy, and Practice. Oxford University Press; New Delhi; 2006.
- M.R. Biju, Human Rights in a Developing Society. Mittal Publications, New Delhi, 2005.
- V.K. Ahluwalia, Green Chemistry: A Textbook. Alpha Science International, 2013.
- 20. V.K. Ahluwalia, Green Chemistry: Environmentally Benign Reaction. CRC, Taylor & Francis, 2008.
- 21. A.P. Dicks, Green Organic Chemistry in Lecture and Laboratory, CRC Press, University of Toronto, Ontario, Canada, 2012.

Mar Athanasius College (Autonomous), Kothamangalam

FYUGP SYLLABUS

Programme/Discipline | B Sc Chemistry (Honours)

Course Name	Fats, Oils and	Waxes				
Type of Course	DSE					
Course Code	M24CH5DSE30	0				
Course Level	300-399					
Course Summary	This course provides a comprehensive understanding of the various types of oils, fats, and waxes, their extraction, and their properties.				he 1 their	
Semester	5		Credits		4	Total Hours
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	75
		-		5		75
Pre-requisites, if any	AL ATHAN	ASIUS	2	\mathbf{x}		

CO No.	Expected Course Outcome	Learning Domains *	PSO No.
1	Describe the sources, composition, characteristics, and utilisation of commercially important oils and fats and their extraction.	U	1,4
2	Illustrate the use of fats and oils as food materials and give an idea about fat-related diseases.	А	1,4
3	Discuss the importance of glyceride structure and describe the different test methods for physical and chemical properties.	An	1,4
4	Investigate the types of waxes and fatty alcohols and describe the concept of autoxidation.	Ар	1,4

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Units	Course description	Hrs	CO No.
--------	-------	--------------------	-----	--------

1 Commercially important oils and fats and their extraction	1.1	Study of the sources, composition, characteristics, and utilisation of commercially important oils and fats - butter, tallow, lard, coconut oil, palm oil, cocoa butter, olive oil, cotton seed oil, rice bran oil, sesame oil, soybean oil, sunflower oil, linseed oil, mustard oil, castor oil, and marine oils.	8	1
(15 hours)	1.2	Mechanical pretreatment and heat treatment of oil-bearing materials. Rendering of animal fats and cooking of oil seeds. Mechanical expression of oils. Solvent extraction, type of extractors, supercritical fluid extraction of oils and fats.	7	1
2.	2.1	Cooking oil, salad oil, and salad dressings. Margarine and Shortenings	4	2
Oils and fats as food materials (15 hours)	2.2	Essential fatty acids: ω -3 and ω -6 fatty acids and their dietary sources, significance to human nutrition and health.	6	2
	2.3	Fat-related diseases: atherosclerosis, arthritis. Nutritional significance of EFA, HDL, LDL, and VLDL.	5	2
_	3.1	Glyceride composition of natural fats. Methods of investigation of glycerides. Theories of glyceride structure.	5	3
3. Glyceride structure; Analysis of fats and oils (15 hours)	3.2	Test methods for physical properties: melting point, softening point, titer, flow test, cloud test, consistency test, liquid and solid fatty acid determination, solid fat index, specific gravity, refractive index, and viscosity.	5	3
	3.3	Test methods for chemical properties: Iodine value, thiocyanogen number, saponification value, acid value and free fatty acid, peroxide value, Reichert-Meissel value, Polenski value, and Kirschner value. Adulteration of oils fats – detection of adulteration.	5	3

4	4.1	Occurrence, classification, properties, and composition of waxes. Synthetic waxes.	4	4				
4. Waxes, Fatty Alcohols, Rancidity in oils and fats	4.2	Naturally occurring fatty alcohols - production, uses, and applications.	5	4				
(15 hours)	4.3	Concept of autoxidation, tests for rancidity, stability of oils, induction period, antioxidants, drying, semi-drying, and nondrying oils	6	4				
5		Teacher Specific contents This content will be evaluated internally.						
Teaching and Learning Approach	Classi Lectur Discus Presen	e sion tation						

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks , Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks

- D. Swern, Bailey's Industrial oil and Fat Products, Vol. I-II, 6th Edn., John Wiley & Sons, 2005.
- 02. T.H. Aplewhite, Bailey's Industrial Oil and Fat Products, Vol.III, 4th Edn., John Wiley-Interscience,1985
- 03. F.D. Gunstone, An introduction to Chemistry and Biochemistry of Fatty acids and

their Glycerides, Chapman and Hall, 2008.

- 04. T.P. Hilditch, P.N. Williams, The Chemical Constitution of Natural Fats, 4th Edn., John Wiley & Sons, 1964
- 05. H.A. Boekenoogen, Analysis and Characterization of Oils, Fats and Fat Products, Vol.I, Interscience, 1964.
- 06. P. Tooley, Chemistry in Industry-Fats, Oils and Waxes, John Murray, 1971.
- 07. W.W. Christie, Lipid Analysis, 3rd Edn., Oily Press, 2003.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B Sc Chemistry (Honours)
Course Name	Spectroscopic Techniques
Type of Course	DSE
Course Code	M24CH5DSE301

Course Level	300-399					
Course Summary	The spectroscopic Methods of Chemical Analysis course covers various spectroscopic methods, including instrumentation of UV-Visible, infrared, and nuclear magnetic resonance (NMR) spectroscopy and principles and applications of Raman, EPR, Mossbauer, Fluorescence, X-ray, Atomic Absorption, Atomic Emission and Flame Emission Spectroscopic techniques. Students delve into theoretical foundations, instrumentation, and practical aspects of spectroscopic analysis, exploring how these techniques are utilized in chemical, biological, and material sciences.					
Semester	5	5 Credits 4 Total				
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
		4		0		60
Pre-requisites, if any						

0.

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PSO No			
1	Discuss general theory of spectroscopy and interpret rotational and vibrational spectroscopic techniques.	U,An	1,2,4			
2	Describe the fundamental principles of Raman, Electronic and Mass spectroscopic techniques in chemical analysis.	U,An	1,2,4			
3	Evaluate the advantages and limitations of Raman spectroscopy, Electronic and Mass spectroscopy in different scientific and industrial applications.	Е	1,2,3			
4	Assess the utility of NMR, ESR and Mössbauer spectroscopy, in various fields.	Е	1,2			
5	Describe the fundamental principles of AAS, AES and FES.	U	1,2			
6	Compare and contrast the advantages and limitations of AAS, AES, and FES in elemental analysis.	U	1,2			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Unit	Course description	Hrs	CO No.
	S			

1. Rotational and	1.1	Electromagnetic radiation, regions of the spectrum, interaction of electromagnetic radiation with molecules, various types of molecular spectroscopic techniques, Born- Oppenheimer approximation.	2	1
spectroscopy	1.2	Rotational spectrum: diatomic molecules, energy levels of a rigid rotator, selection rules, determination of bond length.	3	1
	1.3	Vibrational spectrum: the simple harmonic oscillator – energy levels, force constant, selection rules. Anharmonic oscillator, Morse function and Morse curve – pure vibrational spectra of diatomic molecules, selection rules, fundamental frequencies, overtones, hot bands, combination and difference bands, Fermi resonance. Degrees of freedom for polyatomic molecules, concept of group frequencies, finger print region – frequencies of common functional groups in organic compounds	10	1
2 Raman, Electronic and Mass	2.1	5	2,3	
specificscopy	2.2	Electronic spectrum: concept of potential energy curves for bonding and anti-bonding molecular orbitals, electronic transition, the Frank-Condon principle, dissociation energy. Polyatomic molecules – qualitative description of σ , π and n- molecular orbitals, their energy levels and the respective transitions.	6	2,3
	2.3	Mass spectrometry: Basic principle-ionization, fragmentation, separation of ions and representation of the spectrum, application in molecular mass determination	4	2,3
2. NMR, ESR and Mossba uer, Spectrosco py		3.1 Basic principles of NMR spectroscopy – nuclear spi Larmor precession. Proton magnetic resonance (NMR or PMR) – nuclear shielding and deshieldin chemical shift and molecular structure. Spin-sp splitting and coupling constant. First order spectra interpretation of PMR spectra of simple organic molecules such ethyl bromide, ethanol, acetaldehyde, ethyl aceta toluene, acetophenone.	in, 8 H 8 ng, 5 Din as te,	4
		3.2 ESR spectroscopy- basic concepts	2	4
		 Mossbauer Spectroscopy: Principle, Doppler effect, recording of spectrum, chemical shift, factors determining chemical shift, application to metal complexes. 	g 5	4

4 Atomic Spectros	4.1	Atomic absorption spectroscopy (AAS), principle of AAS, absorption of radiant energy by atoms, measurement of atomic absorption, instrumentation: Radiation Sources, Atomizers, Detectors. Analytical Applications of AAS.	5	5,6
copic Techniques	4.2	Atomic emission spectroscopy (AES), advantages and disadvantages of AES, origin of spectra, principle and instrumentation, applications.	5	5,6
	4.3	Flame emission spectroscopy (FES), flames and flame temperature, spectra of metals in flame, instrumentation, applications.	5	5,6
5		Teacher specific Contents		
		(To be evaluated internally)		
		Classroom Procedure (Mode of transaction)	1	I
Teaching and Learning Approach		Lecture Sessions, interactive Sessions including discussions demonstrations, to engage students actively and visual aids l presentations and videos to enhance understanding. Utilize of from various scientific fields (like environmental science, pl forensics) to illustrate how spectroscopy is applied practical groups to discuss concepts, compare approaches, and explain one another.	i and like case st narmad ly. Foi n conc	udies ceuticals, rm study epts to

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks , Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks

- 1. J W. Robinson, E M S Frame, and G M. Frame II, Instrumental Analytical Chemistry, CRC Press, 2021.
- 2. F A Settle, Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall, 1997.
- 3. J W. Robinson, E M S Frame, and G M. Frame II, Undergraduate Instrumental Analysis, 7th Edn., CRC Press, 2014.

- 4. D A. Skoog, D M. West, F. J Holler, S R. Crouch, Fundamentals of Analytical Chemistry, 9th Edn., Brooks/Cole, 2014.
- C N Banwell, E M McCash, Fundamentals of Molecular Spectroscopy, 4th Edn., McGraw-Hill Publishing Company, 2017.
- 6. Aruldhas, Molecular Structure and Spectroscopy, 2nd Edn., Prentice Hall India, 2007.
- D A. Skoog, F. J Holler, S R. Crouch, Principles of Instrumental Analysis, 7th Edn., Brooks/Cole, 2020.
- 8. P Gupta, S. S. Das, N. B. Singh, Spectroscopy, Jenny Stanford Publishing, 2023.

t t	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B.Sc. CHEMISTRY (Honours)
Course Name	Polymer Chemistry
TypeofCourse	DSE
Course Code	M24CH5DSE302
CourseLevel	200 – 299

Course	The course 'Polymer chemistry' covers the synthesis, structure, and properties of					
Summary	polymers. It examines polymerization techniques, exploring both natural and					
	synthetic polymers'	molecular str	ructures and	l behaviours.	The course e	emphasizes
	polymerization mec	chanisms, pro	operties of	polymers ar	nd their appli	cations in
	various fields. Discu	ssions on app	lications act	ross industrie	s, from materi	als science
	to biomedical fields,	highlight the	practical sig	gnificance of	polymer chen	nistry.
Semester	5	Credits			4	Total Hours
						liouis
CourseDetails	Learning Approach	Lecture	Tutorial	Practical	Others	
		4				60
Pre-requisites, if any					<u>.</u>	

CO No.	ExpectedCourseOutcome	Learning Domains*	PSO No.
1	Describe the fundamental concepts of polymers, polymerisation reactions and polymerisation techniques	U	1
2	Analyse basic determinants of polymer properties	An	1, 2
3	Develop a comprehensive idea of tacticity in polypropylene and Ziegler-Natta polymerisation of alkenes.	А	1, 2
4	Understand different polymerization techniques and types of polymer degradation.	U, E	1, 2
5	Examine the structures, properties, and applications of addition polymers, condensation polymers and polymer resins	А	1, 2, 4
6	Identify the importance of vulcanization process and the practical aspects of formulating rubber compounds	An	4
*Reme and Ap	mber(K),Understand(U),Apply(A),Analyse(An),Evaluate(E),Creat preciation (Ap)	te(C),Skill(S), I	Interest (I)

COURSECONTENT

Content for Classroom transaction(Units)

Module	Units	CourseDescription	Hrs	CO No.
1.	1.1	History of Polymers, Terminology, Monomers, oligomers and polymers. Degree of polymerization, Poly Dispersity Index, Constitutional Repeat Units Classification of polymers-based on origin, structure, intermolecular forces and type of monomers. Polymer nomenclature. Importance of polymers.	9	1

Introduction to polymers and polymerisation reactions	1.2 Addition and condensation polymerization. Chain polymerization, ring opening polymerization, Co- ordination polymerization, group transfer polymerization.	6	1
(15 Hours)			
2.	 Advantages, disadvantages and examples of Bulk polymerisations, solution polymerization, Suspension polymerisation and Emulsion polymerisation. Melt Polycondensation Polymerisation, Interfacial polycondensation Polymerisation. 	5	1
Polymerisation Techniques	2.2 Structure-Property relationships of polymers,	6	2, 3
(15 Hours)	(crystallization and crystallinity, crystalline melting point. Crystallization Mechanisms. Determination of Crystalline Melting Point and Degree of Crystallinity. Morphology of Crystalline Polymers.		
	Tacticity in polymers–Isotactic, Syndiotactic and Atactic. Ziegler-Natta polymerisation of alkenes.		
	2.3 Molecular weight of polymers: Number average (Mn), and weight average (Mw), Sedimentation (Mz)and Viscosity Average Molecular Weights (Mv). Determination of Average Molecular Weights. Glass Transition Temperature (Tg): Definition. Factors influencing class transition	4	2
	temperature (Tg). Importance of Tg.		
3. Polymer Processing and Degradation	3.1 Compression moulding, Injection Moulding, Blow Moulding, Extrusion moulding, Thermoforming, Die casting, Film casting, Rotational casting, Polymer Calendering, Spinning of Polymers	9	1, 4
	 3.2 Polymer degradation Thermal degradation, mechanical degradation, photodegradation, Oxidative degradation. High temperature-resistant and flame retardant 	6	4
	polymers. Biomedical applications of polymers.		
4. Chemistry of Commercial Polymers (15 Hours)	4.1 Brief introduction to the structure, properties and applications of the following addition polymers: , polyolefins (LDPE, HDPE and PP), poly(vinyl chloride), polystyrene, poly (vinyl acetate), acrylic polymers (PAN and PMMA), fluoropolymers (PTFE).	5	5
	4.2 Brief introduction to the structure, properties and applications of the following Condensation polymers: aliphatic polyamides (Nylon 6,6 and Nylon 6), aromatic polyamides	4	5

		(Kevlar), polyesters (PET).			
	4.3	Brief introduction to structure, properties and	3	5	
		Resins: Formaldehyde resins (PF UF and MF)			
		polyurethanes, polycarbonates, epoxy resins.			
	4.4	Introduction to vulcanisation of natural rubber-	3	6	
		types of vulcanisations (EV, semi-EV and CV),			
		activator system, accelerator system. Formulation			
		of a rubber compound – rubber mat.			
5		Teacher specific Contents			
		(To be evaluated internally)			
		Classroom Procedure (Mode of transactio	n)		
Teaching and	Lecture	(Chalk& Board, Power point presentation) Group I	Discussion	n	
Learning	Peer teaching				
Арргоасн	Industri	al Visit			

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
MAMA	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
IN EDGI	Part C (Long essay) -2 out of $4 \times 10 = 20$
INOW	marks

- 1. Gowariker, V. R.; Viswanathan, N. V.; Sreedhar, J. *Polymer Science*; Wiley, 1986.
- 2. Fred W. Billmeyer, Textbook of Polymer Science, John Wiley & Sons, 2007
- 3. Carraher, C. E. Seymour/Carraher's Polymer Chemistry: Sixth Edition; CRC Press, 2003.
- 4. Odian, G. Principles of Polymerization, 4th ed., Wiley, 2004.
- 5. Ghosh, P. *Polymer Science & Technology*, 2nd ed., Tata McGraw-Hill, New Delhi, 2002.
- 6. Lenz, R. W. Organic Chemistry of Synthetic High Polymers; Interscience Publishers, New York, 1967.
- 7. Bahadur, R., Sastry, N. V. *Principles of Polymer Science*; Narosa, New Delhi, 2003.
- 8. Ebewele, R. O. Polymer Science and Technology; CRC Press, 2000.
- 9. Subramanian, M. N. Basics of Polymer Chemistry; River Publishers, 2022.

- Z. N. Siddiqui, *Practical Industrial Chemistry*, Anmol Publications, 2002.
 S. M. Ashraf, S. Ahmad, U. Riaz, A laboratory manual of polymers, I. K. Publishing, 2013.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B.Sc. CHEMISTRY (Honours)
Course Name	Industrial Inorganic Chemistry and Nuclear Chemistry
Type of Course	DSE
Course Code	M24CH5DSE303
Course Level	300 - 399
Course	The course 'Polymer chemistry' covers the synthesis, structure, and properties of
Summary	polymers. It examines polymerization techniques, exploring both natural and
	synthetic polymers' molecular structures and behaviours. The course emphasizes
	polymerization mechanisms, properties of polymers and their applications in
	various fields. Discussions on applications across industries, from materials science
	to biomedical fields, highlight the practical significance of polymer chemistry.

Semester	5	Credits			4	Total Hours
CourseDetails	Learning Approach	Lecture 4	Tutorial	Practical	Others	60
Pre-requisites, if any		1	1	I	I	1

CO No.	ExpectedCourseOutcome	Learning Domains*	PSO No.
1	Analyse different Industrially important inorganic materials	An	1, 2
2	Evaluate the important processes involved in Metallurgy	E	1, 2
3	Explain the catalytic properties of inorganic materials	Е	1, 2,4
4	Understate the basics of chemical explosives and rocket propellants	U	1, 2, 4
5	Analyse different aspects involved in Nuclear chemistry, its applications, nuclear reactors, applications and problems associated	А	1, 2, 3, 4
*Remen and Ap	mber(K),Understand(U),Apply(A),Analyse(An),Evaluate(E),Crea preciation (Ap)	te(C),Skill(S), I	Interest (I)

COURSECONTENT

Content for Classroom transaction(Units)

Module	Units	CourseDescription		CO No.
1. Glass, Ceramic	1.1	Glass- Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass.	5	1
and Cements (15 Hours)	1.2	Ceramics -Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications, super conducting and semiconducting oxides, fullerenes carbon nanotubes and carbon Fiber. Bioceramics,	5	1

		Biocement-Living building materials		
		Diocement Living building materials.		
	1.3	Cement-Classification of cement, ingredients	5	1
		and their role, Manufacture of cement and the		
		setting process, quick setting cements.		
	2.1	Minerals in India, Mineral processing, Chief		
	2.1	modes of occurrence of metals based on		
2		standard electrode potentials. Ellingham	5	2
		diagrams for reduction of metal oxides using		
Metallurgy	2.2	carbon and carbon monoxide as reducing agent.		2
0.	2.2	Electrolytic Reduction, Hydrometallurgy with	5	2
(15 Hours)		reference to cyanide process for silver and		
		gold. Methods of purification of metals:		
		Electrolytic process, van Arkel-de Boer process		
		and Mond's process, Zone refining.		
	2.3	Preparation of metals (ferrous and	5	2
		nonferrous) and ultrapure metals for		
	5	semiconductor technology.		
3.	3.1	General principles and properties of catalysts,	7	3
Introduction to	- 1	homogenous catalysis (catalytic steps and		
Chemical		examples) and heterogenous catalysis (catalytic		
Explosives,		steps and examples) and their industrial		
rocket		applications, Deactivation, or regeneration of		
propellants		catalysts. Phase transfer catalysts, application of		
and catalysis		zeolites and Metal organic Frameworks as		
(15 Hours)		catalysts.		
	3.2	Origin of explosive properties in inorganic	6	4
		compounds. Categorisation of explosives (low		
		explosives – high explosives – primary,		
		secondary, intermediary, tertiary). Explosive		
		properties of Gun powder, lead azide, TNT,		
	2.2	PEIN, cyclonite (RDX).	2	4
	3.3	A Brief History and introduction of chemical	2	4
		rocket propellants. Liquid propellants ecofriendly		
		propellants and solid propellants		
4.	41	propendites and solid propendites	5	5
Nuclear		Nucleus and its classification, nuclear forces,	5	Ū.
Chemistry		nuclear stability, binding energy, nuclear models.		
		Radioactive decay (Radioactive elements, general		
		characteristics of radioactive decay, decay		
		kinetics - decay constant, half life, mean life		
		period), units of radioactivity.		
	4.2		5	5
		Measurement of radioactivity, Geiger-Muller	-1	-
		detector, Scintillaton detectors, Nuclear reactor:		
		classification of reactors, uranium reactor, breeder		
		reactor. Nuclear reactors in India (Brief Idea).		
		Nuclear fusion and stellar energy. Units of		

	radiation energy (Rad, Gray, Rontgen)		
	4.3 Nuclear pollution and Radiological safety: Interaction of radiation with matter, Radiolysis of water, Radiation dosimetry. Radioactive isotopes and their applications, Isotopic dilution analysis, Neutron activation analysis, Disposal of nuclear waste, nuclear disaster (nuclear accidents– discussion about case studies).	5	5
5	Teacher specific Contents		
	(To be evaluated internally)		
	Classroom Procedure (Mode of transaction	n)	
Teaching and Learning Approach	Lecture (Chalk& Board, Power point presentation) Gro Peer teaching Industrial Visit	oup Dis	cussion

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
Harris	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
MMA	Part C (Long essay) -2 out of $4 \ge 10 = 20$ marks

- 1. E. Stocchi: Industrial Chemistry, Vol-I, , Ellis Horwood Ltd. UK.
- 2. R. M. Felder, R. W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi.
- 3. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi.
- 4. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: Introduction to Ceramics, Wiley Publishers, New Delhi.
- 5. P. C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi.
- 6. R. Gopalan, D. Venkappayya, S. Nagarajan: Engineering Chemistry, Vikas Publications, New Delhi.
- 7. B. K. Sharma: Engineering Chemistry, Goel Publishing House, Meerut
- 8. S.F. Sarner, propellant Chemistry, Reinhold Publishing Co., 1966
- 9. T. Urbanski, Chemistry and Technology of Explosives Vol.I to IV, Pergamon

Press, 1984

- 10.Friendlander G, Kennedy G and Miller J. M. Nuclear and Radiochemistry, Wiley Interscience
- 11. Harvey, B. G. Introduction to Nuclear Physics & Chemistry, Prentice Hall,
- 12. Overman R. T, Basic concept of Nuclear Chemistry, Chapman & Hall.
- 13.A. N. Nesmeyanov, Radiochemistry, MIR Publication, Moscow.
- 14.Spinks J. W. T. and Woods R. J. An Introduction
 - to Radiation Chemistry, Wiley
- 15. Arnikar H. J., Essentials of Nuclear Chemistry,
 - Wiley Eastern, Second Edition.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme	B Sc Chemistry (]	Honours)					
Course Name	Analytical Chemistry and Professional skills						
Type of Course	SEC						
Course Code	M24CH5SEC300						
Course Level	300-399						
Course Summary	This course provides a comprehensive introduction to Analytical Chemistry, focusing on interdisciplinary concepts, precision in analysis, and practical applications in soil and water studies. It incorporates hands-on experiences, including workshops, interview training, industrial visits, and expert interactions, culminating in a career-oriented project for enhanced professional readiness.						
Semester	5	Credits	3	Total			

Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
		2		1		60
Pre-requisites, if any	Nil					

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Understand the fundamentals of analytical chemistry	U	1
2	Develop skills for soil and water analysis	С	1,3,4
3	Understand the principles of chromatographic techniques	U	1,4
4	Apply the principles of Thin Layer Chromatography and column chromatography for purification and separation purposes.	А	1,4
5	Support students with the tools and insights to navigate the professional landscape effectively and contribute meaningfully to their chosen fields.	E	1,3,4
*Remen Interest	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate I, Ci (I) and Appreciation (Ap)	reate (C), Skill	(S),

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Unit s	Course description	Hrs	CO No.
	1.1	Introduction : Introduction to Analytical Chemistry and its interdisciplinary nature. Concept of sampling	2	1
1 Analytical Chemistr	1.2	 Analysis of soil: Composition of soil, Concept of pH and pH measurement, Complexometric titrations, Chelation, Chelating agents, use of indicators. a. Determination of pH of soil samples. b. Estimation of Calcium and Magnesium ions as Calcium carbonate by complexometric titration. 	6	2,5

У	1.3	 Analysis of water: Definition of pure water, sources responsible for contaminating water, water sampling methods, and water purification methods. a. Determination of pH, acidity, and alkalinity of a water sample. b. Determination of the Hardness of water. 	7	2,5
	2.1	Introduction of chromatography: Basic principles of chromatography, Types of chromatography	2	3,4,5
2 Chromatographic techniques		Theory and Application -Gas chromatography, High-Performance Liquid Chromatography (HPLC)	5	3,4,5
~	2.3	Theory, application, and demonstration of Thin Layer Chromatography and Column Chromatography	8	3,4,5

	Analysis of s	oil		
3. Practicals Professional Development	i) I I i b	Determination of pH of soil. ii) Determination of total soluble salts. ii) Determination of carbonate and bicarbonate. iv) Determination of ealcium, magnesium and iron.	15	
	ii) c c a 7	Determination of adulterant in some common food items i) Chicory in coffee powder ii) Foreign resin in asafetida iii) Chilli powder iv) Furmeric powder v) Pulses		
	iii) S C V t	Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of wo compounds to be given)		
		a) Identify and separate the components of a given mixture of 2 mino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other mino acid) by paper chromatography		
		b)Identify and separate the sugars present in the given mixture by paper phromatography.		
	• Wo • Tra • Indu • Inte	rkshop on carrier awareness ining sessions for interviews ustrial visit raction with industrial experts		
1	• Cre	Teacher gracific Contents		
4		(To be evaluated internally)		
	Classroom Proced	ure (Mode of transaction)		
Teaching and Learning Approach	Lectures, discussio tours	ons, group activities, seminars, indus	strial visi	ts, study

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 35 marks, Duration 1 hrs
Theory $Total = 15$ marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -3 out of $6 \times 5 = 15$ marks
Lab performance, record, field report etc.	Part C (Long essay) -1 out of 2 x 10 = 10
	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

- 1. Skoog, D.A. and Leary, J.J., Instrumental Methods of Analysis, Saunders College
- 2. Publications, New York, 1992
- Skoog, D.A.; West, D.M. and Holler, F.J. Fundamentals of Analytical Chemistry 6th Ed., Saunders College Publishing, Fort Worth, 1992
- 4. Harris, D. C. Quantitative Chemical Analysis 7th Ed., W. H. Freeman and Co., New York, 2007
- 5. E. Helfman, Chromatography, Van Nostrand, Reinhold, New York
- 6. E. Lederer and M. Lederer, Chromatography, Elsevier, Amsterdam.
- 7. Chemical separation methods, John A Dean, Von Nostrand Reinhold, New York
- 8. R.P.W Scott, Techniques and Practice of Chromatography, Marel Dekker Inc., New York

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B Sc Chemistry (H	lonours)				
Course Name	Inorganic Chemistr	Inorganic Chemistry-2				
Type of Course	DSC	DSC				
Course Code	M24CH6DSC300	M24CH6DSC300				
Course Level	300-399					
Course Summary	This course discusses about theories and reactions coordination chemistry, introduction to organometallic compounds and bioinorganic chemistry. The practical component involves radical analysis and colorimetric estimation.					
				-		Total
Semester	6	ASIUS	Credits	15	4	nouis
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	
		3		1		75
Pre-requisites, if any	Inorganic Chemistr	y-1 AMANGP	EN I	/		

CO No.	Expected Course Outcome	Learning Domains *	PSO No		
1	Understand the basics of coordination Compounds. Learn about IUPAC nomenclature, isomerism and stability of Coordination compounds	А	1,2		
2	Understand the important theories of coordination compounds and Explain the mechanisms of substitution reactions	U	1,2		
3	Describe the key concepts of inorganic and organometallic chemistry	Е	1,2		
4	Illustrate stability of organometallic compounds and clusters and their application as industrial catalysts.	U	1, 2,5		
5	<i>Explain</i> the importance of various metal ions in biological system, structural understanding and biological functions of various biomolecules	E	1,2,5		
6	<i>Evaluate</i> different complexes based on colourimetry and electronic spectra (Practical)	Е	1,2,4		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transactions (Units)

Module	Units	Course description	Hrs	CO No.
1. Coordination Chemistry	1.1	Introduction - Types of ligands – Anionic, cationic and neutral – IUPAC Nomenclature - Structural and stereoisomerism in coordination compounds. Chelates and chelate effect- Stability of complexes: Factors influencing stability	2	1
	1.2	Theories of bonding: Werner's theory, Sidgwick's concept of coordination, Valence bond theory - Geometries of coordination numbers 4 and 6 – Inner orbital and outer orbital complexes- Limitations of VBT	2	2
		Crystal field theory - Splitting of <i>d</i> - orbitals in octahedral, tetrahedral - CFSE - low spin and high spin complexes. Spectrochemical series - Explanation of geometry, magnetism and spectral properties - Jahn Teller Effect- Splitting of <i>d</i> -orbitals in tetragonal and square planar complexes-		
1	1.3	Factors affecting crystal field splitting - Merits and Merits and demerits of VBT and CFT MO theory, evidence for metal- ligand covalency, The nephelauxetic effect, MO diagram of complexes of octahedral symmetry (sigma bonding only)	6	2
	1.4	Reactivity of metal complexes-Labile and inert complexes	1	2
	1.6	Ligand substitution reactions SN1 and,SN2 .ligand substitution reactions in square planar and Octahedral complexes	2	2
	1.7	Trans effect and applications of trans effect Theories of trans effect-polarization and π -bonding theory.	2	2

	2.1	Organometallic Compounds: Introduction to organometallic compounds, Hapticity in Organometallic compounds	1	3
2. Organometallic	2.2	The 18electron rule, numerical problems, and stability	2	3
Compounds	2.3	Ferrocene: Preparation, structure, aromaticity and reactions (acetylation, alkylation).	2	3
	2.4	Metal-alkene complexes- – Preparation and structure of Zeise's salt	1	3
	2.5	Catalytic properties of organometallic compounds - Zeigler Natta catalyst in the polymerization of alkene. Wilkinson catalyst in the hydrogenation of alkene (mechanism not expected).	2	4
	2.6	Preparation and structure of mononuclear carbonyls- Mo(CO)6, Fe(CO)5 and Ni(CO)4	3	4
	2.7	Polynuclear carbonyls, bridged carbonyls, and bonding in metal carbonyls – Mn2(CO)10 and Fe2(CO)9.	2	4
	2.8	Synergic effect and use of IR data in metal carbonyls to explain extent of back bonding	1	4
	2.9	Quadruple bond structure of [Re ₂ CI ₈] ² -& Quintuple bond structure of [CrC ₆ H ₃ -2,6- (C ₆ H ₃ -2,6-(CHMe ₂) ₂) ₂] ₂	1	4
	3.1	Essential and non – essential metals	1	5
3. Introduction to Bioinorganic	3.2	Mechanism of ion transport- Ion pump (Na ⁺ and K ⁺)	2	5
Cnemistry	3.3	Porphyrins, Oxygen carriers haemoglobin and myoglobin- structure and functions, oxygen transport mechanism, co- operativity effect, Bohr effect	4	5
	3.4	Cytochromes- Structure and functions of Cytochrome P-450	1	5
	3.5	Non-heme proteins- structure and functions of hemocyanin & hemerythrin	1	5
	3.6	Photosynthesis- Chlorophylls (Structure not needed) – Z- scheme (Only)	2	5

	3.7	Metalloenzymes- specificity and mechanism Vitamin B12-Structure and Functions	2	5
	3.8	Toxicity of metals - Cd, Hg, Pb and Cr toxic effects with specific examples.	1	5
	3.9	Treatment of metal toxicity by chelation therapy by EDTA	1	5
	4.1	Colorimetric estimation of Fe, Cu, Ni, Mn, Cr, NH4 ⁺ , nitrate and phosphate ions. Or Demonstrate the UV- Visible spectra studies of different coordination compounds	15	6
4. Inorganic practical-II	4.2	Study of the reactions of the following radicals with a view to their identification and confirmation. Pb ²⁺ , Al ³⁺ , Zn ₂₊ , Mn ₂₊ , Ni ₂₊ , Ca ₂₊ , Sr ₂₊ , Ba ₂₊ , Mg ₂₊ , NH ₄ ⁺ , CO ₃ ²⁻ , SO ₄₂₋ , Cl-, Br-, CH3COO- 2. Systematic qualitative analysis of mixtures containing two acid and two basic radicals from the above list without interfering radical by Semi- micro method only. (Minimum of 5 mixtures to be analysed)	15	6
3.9	1			
5	Teacl (To be	ners Specific Content e Evaluated Internally)		

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	 Lecture (Chalk& Board, Powerpoint presentation) Group Discussion Peer teaching Demonstration of experiments Hands-on training

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory $Total = 25$ marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks
I NAS	Practical Total = 35 marks; Duration- 2 hrs
AHAI	Record 10 marks, Examination 25 marks

- 1. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 6th Edition, Wiley India Pvt. Ltd., New Delhi, 2009 (Reprint).
- 2. J.E. Huheey, E.A. Keitler and R.L. Keitler, Inorganic Chemistry–Principles of Structure and Reactivity, 4th Edition, Pearson Education, New Delhi, 2013.
- D.F. Shriver and P. Atkins, Inorganic Chemistry, 5th Edition, Oxford University Press, New York, 2010. 4 J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Oxford University Press, New Delhi 2008.
- 5. R. Gopalan and V. Ramalingam, Concise Coordination Chemistry, 1st Edition, Vikas Publishing House, New Delhi, 2001.
- B. D. Guptha, A. J. Elias Baisc Organomettalic Chemistry, Concepts, Synthesis and Applications, 2nd Edition, University Press
- 7. I. Bertini, H. B. Gray, S. J. Lippard, J. S. Valentine, Bioinorganic chemistry, University Science Books, 1994.
- 8. J. A. Cowan, Inorganic Biochemistry: An Introduction, VCH Publishing, 1993.
- W. Kaim, B. Schwederski, B. Bioinorganic chemistry: Inorganic Elements in the Chemistry of Life, Wiley, 2006
- Vogel, A.I. (1989) Book. In: Jeffery, G.H., Bassett, J., Mendham, J. and Denney, R.C., Eds., Vogel's Textbook of Quantitative Chemical Analysis, 5th Edition, Longman Scientific and Technical, Harlow, 582.

SUGGESTED READINGS

- 1. W. Pfennig, Principles of Inorganic chemistry. John Wiley & Sons, 2015.
- 2. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, 2012.
- 3. Catherine E. Housecroft , Alan G. Sharpe C. E. Barnes, Inorganic Chemistry 4th Ed. Journal of Chemical Education, 2003.
- 4. Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers. SCIENCE, 4 Nov 2005 844-847, 10.1126/science.1116789

Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS

Programme	B.Sc. CHEMISTRY (Honours)					
Course Name	Physical Chemistry III					
Type of Course	DSC					
Course Code	M24CH6DSC301					
Course Level	300 - 399					
Course	The course aims to pr	rovide fundan	nentals of su	rface chemist	ry, chemical k	inetics and
Summa	electrochemistry alon	g with their ap	oplications in	n various field	ls.	
ry			-			
Semester	6	Credits 4 Total			Total	
						Hours
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	
	1	3		7		75
Pre-	It is advisable that t	he students s	should be a	ware of the	fundamentals	of general
requisites, if	chemistry and physic	al chemistry i	including ch	emical bondi	ng, chemical e	equilibrium
anv	and redox reactions.	7 -	-)Fm]		-	•

CO No.	Expected Course Outcome	Learning Domains*	PSO No.	
1	Assess different kinds of adsorption and adsorption isotherms.	U,E	1, 2	
2	Differentiate different types of colloidal systems and its purification methods. Explain the electronic and optical properties of colloidal particles.	A, An	1	
3	Students interpret nature of various chemical reactions and describe their kinetics.	An,E	1, 2, 3	
4	Make use of the principles of chemical kinetics to study the mechanism of homogeneous and heterogenous catalysis.	K,A	1	
5	Describe the mechanism and factors affecting electrolytic conductance. Analyse properties of electrolytic conductance.	U,A	1, 3	
6	Utilize conductance measurements in quantitative analysis	U,A	1, 2, 4	
7	Apply Nernst equation to calculate electrode potential	A	1, 3	
*Remember(K), Understand(U), Apply(A), Analyze(An), Evaluate(E), Create(C), Skill(S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	nits Course Description		CO No.
1. Surface Chemistry and Colloidal State (15 Hours)	1.1	Adsorption-types, adsorption of gases by solids – factors influencing adsorption – Freundlich adsorption isotherm – Langmuir adsorption isotherm –derivation of Langmuir adsorption isotherm. Use of Langmuir for surface area determination.	5	1
	1.2	Types of solutions– true, colloid and suspensions, Classification of colloids: Lyophilic, lyophobic, macromolecular, multimolecular and associated colloids with examples, Purification of colloids – Ultra filtration and electrodialysis.	4	2
	1.3	Optical and electrical properties of colloids: Brownian movement, Tyndall effect, Electrophoresis. Electrical double layer and zeta potential. Coagulation of colloids, Hardy-Schulz rule. Micelles and critical micelle concentration, sedimentation and streaming potential. Applications of colloids.	6	2
	2.1	Rate of reaction, rate equation, molecularity and order and of reactions, determination of order of the reactions, Integrated rate expressions for first and second order reactions. Zero order reactions, pseudo order reactions, half life.	5	3
2. Chemical Kinetics (15 Hours)	2.2	Effect of temperature on the rate of reaction Arrhenius equation, concept of activation energy. Theories of chemical kinetics: Collision theory - kinetic theory of collisions, steric factor. Types of complex reactions - consecutive reactions, opposing reactions, parallel reactions, Chain reactions, steady state approximation.	6	3
	2.3	Catalysis: Homogeneous catalysis, enzyme catalysis – Heterogeneous catalysis – Surface catalysis, Elementary idea about Autocatalysis.	4	4
	3.1	Introduction- Faraday's laws of electrolysis, electrochemical equivalent, electrolytic conductivity, molar conductivity - Variation of molar conductivity with concentration. Kohlrausch's law – applications	4	5
3	Ionia mobility relation with ionia conductors			
------------------------	--	----	---	
J. Flectrochemistry	influence of temperature on ionic conductance,			
Lieeti öenennisti y	influence of temperature on fonce conductance,			
(15 Hours)	1000000000000000000000000000000000000	2	5	
(10 110015)	3.2 Abnormal ionic conductance of H ⁺ and OH	3	5	
	(Grotthus mechanism).			
	3.3 Discharge of ions during electrolysis – Hittorf's	4	6	
	theoretical device. Transport			
	Numbers – determination by Hittorf's method and			
	moving boundary method.			
	Applications of conductance measurements –			
	Determinations of degree of dissociation of weak			
	electrolytes, solubility of sparingly soluble salts,			
	conductometric titrations.			
	3.4 Introduction to Galvanic cells, electrode potential –	4	7	
	electrochemical series. Representation of cells			
	– e.m.f of cell. Thermodynamics of reversible cells			
	and reversible electrodes – Determination of ΔG , ΔH			
	and ΔS of cell reaction. E.M.F and equilibrium			
	constant of cell reaction, effect of electrolyte			
	concentration on electrode potential and e.m.f -Nernst			
	equation.			
4. Practicals	1.Viscosity– Determination of viscosity of	30		
	sucrose/glycerol.			
	2. Determination of composition of binaryliquid			
	mixture using			
	viscometry(toluene-nitrobenzene)			
	3.Determinationofmolecularweight ofapolymer			
	using			
	viscometry(polystyrenein toluene)			
	4. Viscometry: Verification of Kendallsequation-			
	fullexperiment			
	5. Computationalchemistryexperiments-			
	Experimentsillustrating the capabilities of			
	modern open source/ free computational			
	chemistry packages in computing.			
	 Singlepointenergy 			
	 Geometryoptimization 			
	 Vibrationalfrequencies 			
	• Population analysis			
	Conformationalanalysisofethane			
	transitionstate search			
	• Molecular orbitals, ionization energy,			
	electron affinity			
	• Dinole moment free valence hond			
	order			
	mpiemoiecules like NH_3 , H_2O , H_2O_2			
	• DeterminationotZ-			
	matrices/Cartesiancoordinatesof			
	turan, thiophene, pyrrole and			

	 benzene using structure Drawing programs like Chemsketch and wwMacMolPlt. 6. Conductometry Determinationofequivalentc onductanceofan electrolyte Determinationofdissociationconsta
	ntanddegreeof dissociation of a weak acid
	VerificationofOnsagerequation 7. Adsorption:
	 VerificationofFreundlichandLang muiradsorption isotherm - Charcoal Acetic acid or Charcoal- Oxalic acid system. Determinationofconcentrationofgivenacidusingthe isotherm
	5. Teachers Specific Content (To be Evaluated Internally)
	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	 Lecture Sessions, (Chalk & Board, PowerPoint presentation) Interactive Sessions Visual aids like videos and models to enhance understanding. Peer discussions.
	 Problem Solving Sessions Laboratory experiments and hands-on training

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \times 10 = 20$
	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

References

- 1. Glasstone S, An Introduction to Electrochemistry, East-West Press (Pvt.) Ltd., 2006.
- 2. Gurdeep Raj, Advanced Physical Chemistry, Goel publishing house, 2016.
- 3. Glasstone and Lewis, Elements of Physical Chemistry, London Macmillan, 1964.
- 4. Marronand S.H. and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Ltd., 1974.
- 5. Vemulapalli G.K., Physical Chemistry, Prentice-Hall of India Pvt. Ltd., 2009.
- 6. Puri, Sharma and Pathania, "Principles of Physical Chemistry", 48th Edition, Vishal Publishing Company, 2020.
- 7. Castellan, G.W. "Physical Chemistry", Narosa Publishing House, 2004.
- Kapoor, K.L., "A Textbook of Physical chemistry", Volume 5, 4th edition, Macmillan India Ltd., 2004.

Suggested Readings

- 1. Atkins, P., de Paula, J., Keeler, J. "Physical Chemistry", Oxford University Press (12th Edition), 2022.
- 2. Barrow, G.M. "Physical Chemistry", 6th edition, Tata McGraw-Hill, 1996.
- 3. McQuarrie, D.A. and Simon, J.D. Physical Chemistry A molecular Approach, Sausalito, Calif. : University Science Books, 1997.

	Mar Athanasius C	College (A FYUGP	utonomou SYLLAB	ıs), Kothar US	nangalan	n
Programme/ Discipline	B.Sc. CHEMISTRY (Honor	urs)				
Course Name						
	Chemistry of Aromatics and	l Essential	Oil Consti	tuents		
Type of Course	DSE					
Course Code	M24CH6DSE300					
Course Level	300-399					
Course Summary	This course provides a cor oils, fats, and waxes, their	nprehensi extractior	ve understan, and their	anding of th properties.	ne various	s types of
Semester	6 Strand	51050	Credits		4	Total Hours
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	60
	THAN	ANGA	211			60
Pre- requisites, if any	ENOWLET	OF IS P				

CO No.	Expected Course Outcome	Learning Domains *	PSO No.
1	Describe the sources, production, nature, chemical constituents, and uses of common spices and	K	1
	condiments and the methods of production and chemistry		
	of the constituents.		
2	Illustrate the use of Natural Sources, production, and	U, S	1,4
	constituents like alcohols, aldehydes and phenols.		
3	Discuss the Natural Sources, production, and chemistry of aromatics and essential oil constituents like acids and esters.	U, S	1
4	Investigate the types of perfumes and flavours and their composition.	Ap, I	1,4

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1 Spices, Spice Oils and Oleoresins (15 hours)	1.1	Study of the sources, production, nature, chemical constituents, and uses of common spices and condiments such as Cardamom, Pepper, Clove, Nutmeg, Mace, Cinnamon, Ginger, Turmeric, Celery, Fennel, Fenugreek, Coriander, Garlic, Vanilla, Saffron, Allspices, Curry leaves, Mint and Mustard.	8	1
	1.2	Methods of production, chemistry of the constituents, and uses of the following: Pepper, Ginger, Turmeric.	7	1
2. Production and Chemistry of Aromatics and	2.1	 Natural Sources, production, and chemistry of aromatics and essential oil constituents such as: a) Alcohols: Benzyl alcohol, phenylethyl alcohol, Cinnamyl alcohol. 	15	2
Essential Oil Constituents -I (15 hours)		 b) Aldehyde: Benzaldehyde, Cinnamic aldehyde, Salicylaldehyde, Vanillin, Piperonal. c) Phenols: Thymol, Carvacrol, Eugenol, Isoeugenol, Methyleugenol. 		
3.	3.1	Natural Sources, production, and chemistry of aromatics and essential oil constituents such as:	15	3
Production and Chemistry of Aromatics and Essential Oil Constituents -II (15 hours)		 a) Acids and Esters: Benzoic acid, Cinnamic acid, Salicylic acid, Anthranilic acid, Benzyl benzoate, Cinnamylacetate, Geranylacetate, Amylacetate. b) Miscellaneous Compounds- Coumarin, Cineoles, Indole, Muscone, Civetone, Artificial Musk. 		
	4.1	Conceptofflavour, the differencebetweenperfumesand flavour.Flavour Characterisation. Sensory analysis-descriptive and discriminant SensoryAnalysis.	3	4

	4.2	The flavour of Coffee, Tea, Cocoa, Onion and Garlic. Synthetic ingredients of food flavourings.	3	4
4. Flavours and Perfumes (15 hours)	4.3	Perfumes: Odour, Odorants, Olfaction, Classification of odour. General Physiology of Olfaction. Perfume Raw materials- Terpeneles and Sesqueterenles oils, Concrete oils, Absolute oils, Isolates from essential oils, and Tincture.	4	4
	4.4	Source and Chemical nature of commercially important Gums, Balsams and Resins.	2	4
	4.5	Perfume Technology- blending and formulation of perfumes. Aerosol Spray Perfumes.	3	4
5		Teacher Specific contents This content will be evaluated internally	· ·	

	Classroom Procedure (Mode of transaction)	
Teaching and Learning Approach	Lecture	
	Discussion	
	Presentation	

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total $= 30$ marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \ge 10 = 20$ marks

References

- 01. F. Rosengarten, The Book of Spices, Jove, 1981.
- 02. J.W. Parry, Hand Book of Spices, Chemical Publishing, 1969
- 03. J.S. Pruthi, Spices and Condiments Chemistry, Microbiology and Technology, Academic Press, 1980.
- 04. E. Guenther, The Essential Oils, Vol I-VI, Van Nostrand, 1972.

- 05. M. Billot, F.V. Wells, Perfumery Technology: Art, Science and Industry, E. Horwood, 1975.
- 06. E.T. Theimer, Fragrance Chemistry: the Science of the Sense of Smell, Academic Press, 1982.
- 07. L. Appell, Cosmetics, Fragrances and Flavours, Novox, 1982.
- 08. N. Groom, The Perfume Handbook, Chapman and Hall, 1992.
- 09. L.H. Meyer, Food Chemistry, Reinhold, 1960.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme/	B.Sc. CHEM	IISTRY (Ho	nours)			
Disciple						
Course Name	Nanoscience	and Nanote	chnology			
Type of Course	DSE					
Course Code	M24CH6D	SE301				
Course Level	300-399					
Course Summary	This course different ma	provides a conterials	omprehensive	e understanding	of the various	aspects of
Semester	6	La Stea	Credits	e I	4	Total Hours
Course	Learning	Lecture	Tutorial	Practical	Others	
Details	Approach	4		J. h		60
Pre- requisites, if any		1075	AMANGAL			
		COURSE	OUTCOM	ES (CO)		

СО	Expected Course Outcome	Learning Domains *	PSO No
No.			
1	The students will be aware of the fundamentals of nanomaterials, their unique physiochemical and optical properties, and their classifications	U	1,2
2	Understand different physical and chemical methods of synthesis of nanomaterials	Ар	1,2,
3	Will understand the importance of different functional nanomaterials, synthesis, and its properties	An	1,2
4	Will understand the applications of nanomaterials in energy, environment, and biology. Toxicity of nanomaterials will understand	S	1,2,5

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Uni ts	Course description	Hrs	CO No.
1. General	1.1	General introduction and theory of nanomaterials: History of nanomaterials; Size and shape dependant properties and their uniqueness; Nucleation and growth of nano systems, Energy at nanoscale - surface characteristics and electrostatic and steric stabilization	7	1
introduction and theory of nanomaterials	1.2	classification of nanomaterials based on dimension- zero-dimensional, one dimensional and two dimensional nanostructures with suitable examples, origin of charge on colloidal sols, zeta potential	8	1
2. Synthesis of Nanomaterials:	2.1	Synthesis of Nanomaterials: Synthesis of nanomaterials- top down approach, bottom up approach, Physical Methods; Vacuum Evaporation, Electron beam evaporation, Cathodic Arc Deposition, Vapour Deposition techniques, mechanical milling, Chemical Methods; Sol-Gel technique, colloidal method, hydro-thermal method, microwave method, wet chemical methods.	15	2
3. Functional nanomaterials	3.1	Functional nanomaterials Carbon Nanomaterials: Introduction to Carbon allotropes and Carbon nanomaterials-Fullerenes: Background, Synthesis, Properties and Applications CNTs (SWNTs and MWCNTs,): Background, Synthesis, and Properties, Graphene: Background, Synthesis, Properties and Applications Metal Nanoparticles: Background, Synthesis, and Properties, Quantum dots: Background, Synthesis, and Properties, Nano chalcogenides: Background, Synthesis, and Properties, and	15	3

4. Applications of Nanomaterials	4.1	Applications of Nanomaterials Application of nanomaterials in biomedicine: biosensor, cancer therapy, Drug delivery, Nanomaterials for energy conversion and storage: fuel cell, battery, super capacitor, solar cell, photocatalysis, Nanomaterials for Environment: water purification, coatings environment, agriculture, textile.	8	4
	4.2	Nanotoxicology and Biosafety: Nanoparticles in the human body: lungs, intestinal tract and skin, Deposition and translocation in the body, Attributes contribute to nanomaterials toxicity. Mechanisms of nanomaterial toxicity: oxidative stress, ecotoxicity, genotoxicity, hemolytic toxicity, mutagenicity and immunotoxicity, Ethics in Nanomedicine	7	4
5		Teacher specific Contents (To be evaluated internally)		

Teaching and Learning	Classroom Procedure (Mode of transaction)
Approach	Lecture, Practical, Discussion

A. Continuous Comprehensive	B. End Semester Examination		
Assessment (CCA)	Theory Total = 70 marks, Duration 2 hrs		
Theory Total $= 30$ marks	Part A (Short answer) -10 out of $12 \times 2 =$		
Quiz, Test Papers, seminar	20 marks		
	Part B (Short essay) $- 6$ out of 9 x 5 = 30		
	marks		
	Part C (Long essay) -2 out of $4 \times 10 = 20$		
	marks		

Reference:

1. K. J. Klabunde and R.M. Richards (Eds.), Nanoscale Materials in Chemistry, 2nd Edn., John Wiley & Sons, 2009.

2. T. Pradeep, Nano: The Essentials, McGraw-Hill (India) Pvt Limited, 2008.

3. Bharat Bhushan, (Ed.), Handbook of Nanotechnology, Springer, 2007.

4. Carl C. Koch (Ed.), Nanostructured Materials: Processing Properties and Applications, William Andrew Inc., 2007.

5. Anke Krueger, Carbon Materials and Nanotechnology, Wiley-VCH Verlag GmbH & Co. KGaA, 2010.

6. Cao, G., Nanostructures and Nanomaterials Synthesis, Properties, and Applications, Imperial College Press, 2004.

7. Wang, Z. L., (Ed.), Characterization of nanophase materials, Wiley-VCH Verlag GmbH, 2000.

8. Garcia-Martinez, J., (Ed.), Nanotechnology for the Energy Challenge. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.

9. Goddard III W.A., et. al.,(Ed.), Handbook of Nanoscience, Engineering, and Technology, Taylor & Francis Group, 2007.

10. B.P.S. Chauhan (Ed), Hybrid Nanomaterials: Synthesis, Characterization, and Applications, Wiley-VCH Verlag GmbH, 2011.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B.Sc. CHEMISTRY (Honours)
Course Name	Nanotechnology for Energy Applications

Type of Course	DSE						
Course Code	M24CH6DSE302						
Course Level	300-399						
Course Summary	This course deals with va	rious energ	gy applicati	ions of nand	omaterials.		
Semester	6	Credits			4	Total	
Course Details	Learning Approach	Lecture 4	Tutorial	Practical	Others	Hours	
		4				00	
Pre-requisites, if any	Basic understanding of synthesis and properties of nanomaterials.						

CO No.	Expected Course Outcome	Learning Domains *	PSO No		
1	Develop a comprehensive knowledge base regarding global energy needs, consumption patterns, classification of energy sources and the energy conservation.	K, U	1, 2		
2	Differentiate between conventional and non-conventional energy sources.	U, An	3		
3	Analyze various photovoltaic technologies, including Solar Cells.	An	1,3		
4	Develop a comprehensive knowledge of nanostructured materials	U	1, 2		
5	Build a strong foundation in the role of MoFs and two diamensional materials in energy related applications	U, An	1,3		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate I, Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course description		CO No.
		Global energy requirements and consumption.		1,2

1 Introduction to energy	1.1	Classification of renewable and non-renewable energy technologies. Conventional energy sources – pros and cons (<i>with relevant case studies</i>). Challenges in the development and implementation of renewable energy technologies	9		
technologies	1.2	Non-conventional sources of energy: Tidal energy, geothermal energy, biomass.	2	1,2	
	1.3	Energy conversion, transport, and storage- challenges and outlooks	4	1,2	
2 Nanomaterials	2.1	Principles of photovoltaic energy conversion (PV): Types of Solar cells: DSSC, Bulk Hetero Junction (BHJ- SC) Solar cells, Quantum dots, Si-solar cells, Perovskites.	8	3	
for Energy Conversion	2.2	Nano, micro, and poly crystalline and amorphous silicon for solar cells. Nano-micro Si-composite structure, various techniques of Si deposition.	4	4	
	2.3	Fuel Cells: Working principle and architecture, Micro- fuel cell technologies.	3	4	
3 Nanomaterials for Storage	3.1	Introduction to Battery technology (<i>working</i> <i>principle</i> <i>and architecture</i>), Primary and Secondary Batteries (Lithium-ion Batteries), Cathode and anode materials.	5	1,4	
recimology	3.2	Capacitors- Principles and materials design. Electrical double layer model. Electrochemical supercapacitors.	5	1,4	
	3.3	Hydrogen storage: Materials and methods, MOFs, metal hydrides, hydrogen storage capacity, hydriding/dehydriding kinetics	5	1,4	
4	4.1	Nanostructured Carbon-based materials, Nano- Oxides, Novel hybrid electrode materials.	5	1,5	
4 State-of- the-art materials	4.2	Introduction to MOFs and its role in energy storage and conversion. COFs (<i>elementary idea only</i>).	5	1,5	
in Energy storage 4.3 and conversion		Elementary idea of the state-of-the-art two- dimensional materials: graphene, boron nitride, carbon nitride, metal	5	1,5	
	chalcogenides (MoS_2 , $MoSe_2$, etc.).				
5.		Teacher specific Contents			
	(To be evaluated internally)				

Classroom Procedure (Mode of transaction)

Lecture, Practical, Discussion

MODE OF ASSESSMENT

B. End Semester Examination
Theory Total = 70 marks, Duration 2 hrs
Part A (Short answer) -10 out of $12 \ge 20$ marks
Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
Part C (Long essay) -2 out of $4 \ge 10 = 20$ marks

References

- Baldev Raj, Marcel Van de Voorde, Yashwant Mahajan, "Nanotechnology for Energy Sustainability (Applications of Nanotechnology)", 1st Edition, Kindle Edition, Wiley-VCH, 2017.
- 2. Twidell. J. and Weir. T "Renewable Energy Resources", E & F N Spon Ltd, 1986.
- 3. T. Pradeep, "Nano: The Essentials", 1st edition, McGraw Hill Publishing Co., New Delhi, 2007.
- 4. Martin A Green, "Solar cells: Operating principles, technology and system applications", Prentice Hall Inc, Englewood Cliffs, 1981.
- Moller. H J "Semiconductor for solar cells", Artech House Inc, 1993. 4. Ben G Streetman, "Solid state electronic device", Prentice Hall of India Pvt Ltd., 1995
 C. Linden Ed., Handbook of Batteries, 2nd edition, McGraw- Hill, New York (1995).
- 6. Handbook of fuel cells: Fuel cell technology and applications by Vielstich. Wiley, CRC Press
- 7. G.A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, Kulwer Acdemic Publishers, Dordrecht, Netherlands (2004).
- 8. J. Larmine and A, Dicks, Fuel Cell System Explained, John Wiley, New York (2000).
- 9. Science and Technology of Lithium Batteries-Materials Aspects: An Overview, A. Manthiram, Kulwer Academic Publisher (2000).
- 10. Hydrogen from Renewable Energy Sources by D. Infield 2004

*t#	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B.Sc. CHEMISTRY (H	Honours)				
Course Name	Biochemistry					
Type of Course	DSE					
Course Code	M24CH6DSE303					
Course Level	300-399					
Course Summary	This course investigate functions within living foundation in understa processes, providing ir molecular level.	This course investigates the complex world of biological molecules and their functions within living organisms. This course equips students with a strong foundation in understanding the molecular mechanisms that underpin life processes, providing insights into the functioning of biological systems at a molecular level				
Semester	6	ASIUS	Credits		4	– Total
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
		AMANG	¥ 1			60
Pre-requisites, if any	Basic biological concept basic thermodynamics.	ts and know	ledge of bi	ochemistry c	oncepts,	
COURSE OUTCOMES (CO)						

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Understanding of biochemical principles and biomolecular structures and functions, emphasizing detailed knowledge of protein structures and their folding dynamics for stability.	U	1,2
2	Apply knowledge by illustrating the structure and function of nucleic acids (DNA and RNA), showcasing an understanding of the double helix model and the significance of base pairing.	U, A	1,2,3
3	Analyze enzyme structures and functions, categorizing them based on classification and nomenclature, and critically	An	1,2
	evaluate the mechanisms of enzyme catalysis, including substrate binding and specificity.		
4	Evaluate enzyme kinetics and regulation, appraising the Michaelis-Menten kinetics and discerning the factors influencing enzyme activity, such as pH, temperature, and cofactors.	Е	1,2

5	Analyze metabolic pathways, differentiate anabolism from catabolism, synthesize knowledge to understand hormonal and allosteric regulation, and identify critical checkpoints for energy homeostasis.	An	1,2,4		
6	Evaluate the complexity of protein synthesis and amino acid metabolism.	Е	1,2		
7	Describe the principles of clinical and applied biochemistry.	U	1,2,4		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Modulo	Unita	Course description	Unc	
Woulle	Units	Course description	nrs	CO NO.
1. Foundations of Biochemistr y	1.1	Introduction to Biochemistry: Scope of biochemistry, Historical development and significance	2	1
	1.2	Biomolecular Structure and Function: Protein structure and function – Primary, secondary, tertiary, and quaternary structures of proteins; Protein folding and stability Nucleic acid structure and function – DNA and RNA, Double helix and base pairing Lipid structure and classification, Membrane structure and function, Role of carbohydrates in cell recognition and signalling	8	2
	1.3	Enzyme Structure and Function: Enzyme classification and nomenclature Mechanisms of enzyme catalysis – Substrate binding and specificity, Transition state theory Enzyme kinetics and regulation – Michaelis Menten kinetics, Factors influencing enzyme activity: pH, temperature, cofactors.	5	3
2.	2.1	Overview of Metabolism: Anabolism vs. catabolism – Overview of metabolic pathways	3	4
Metabolic Pathways	2.2	Carbohydrate Metabolism: Glycolysis and gluconeogenesis, Citric acid cycle Pentose phosphate pathway	6	4
	2.3	Lipid Metabolism: Fatty acid oxidation and synthesis, Triglyceride metabolism, Cholesterol biosynthesis and regulation	6	4

3. Amino Acid and Protein	3.1	Protein Synthesis and Degradation: Transcription and Translation – Overview of the central dogma of molecular biology, RNA synthesis (transcription) and processing, Ribosomes and the translation process Protein targeting and trafficking.	8	5
Metabolism	3.2	Amino Acid Metabolism: Nitrogen metabolism and balance, Ammonia detoxification and the urea cycle, Disorders related to amino acid metabolism	7	5
	4.1	Regulation of Blood Glucose; Insulin and Diabetes Mellitus, Hyperglycemic hormones, Glucagon.	3	6
4.	4.2	Liver and Gastric Function Tests: Functions of liver, Clinical manifestations of liver dysfunction, Studies on malabsorption.	3	6
Clinical and Applied Biochemistr	4.3	Kidney Function Tests: Renal function tests, Abnormal constituents of urine, Tests for tubular function.	3	6
У	4.4	Acid-Base Balance and pH: Acids and bases, Buffers, Acid-base balance, Buffers of the body fluids, Respiratory regulation of pH, Renal regulation of pH, Cellular buffers, Disturbances in acid-base balance.	3	6
	4.5	General Techniques for Separation, Purification and Quantitation: Electrophoresis, Chromatography, Radioimmunoassay, ELISA test, Colorimeter, Autoanalyzer, Mass spectrometry.	3	6
5.		Teacher specific Contents		
		(To be evaluated internally)		
	Classr	oom Procedure (Mode of transaction)		
Teaching and Learning Approach	Lecture engag	e Sessions, Interactive Sessions including discussions and one students actively and visual aids like presentations and vunderstanding.	demonstr ideos to	cations, to enhance

A. Continuous Comprehensive	B. End Semester Examination
Assessment (CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total $= 30$ marks	Part A (Short answer) -10 out of $12 \times 2 = 20$ marks
Quiz, Test Papers, seminar	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \times 10 = 20$ marks

References

- 1. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry, 7th ed., W. H. Freeman., 2021.
- Berg, J.M., Tymoczko, J.L. and Stryer, L. Biochemistry. 9th Edition. W.H. Freeman and Co., 2019.
- 3. U. Satyanarayana, U. Chakrapani. Biochemistry. 6th Edition. Elsevier India Pvt. Ltd, 2021.
- 4. D M Vasudevan, S Sreekumari, Textbook of Biochemistry for Medical Students, Jaypee Brothers Medical Publishers, 2023.
- 5. P.J. Kennelly, Harper's Illustrated Biochemistry, 32 Edition, McGraw Hill, 2022.
- 6. R Singh, R Goyal, Lippincott's Illustrated Reviews Biochemistry, 2020.
- 7. P Naik, Biochemistry, Jaypee Brothers Medical Publishers, 2022.

SUGGESTED READINGS

1. Murray, R.K., Granner, D.K., Mayes, P.A. and Rodwell, V.W. (2009) Harper's Illustrated Biochemistry. XXVIII edition. Lange Medical Books/ McGraw-Hill.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS							
Programme	B.Sc. CHEMISTRY (Honours)							
Course Name	Dairy Chemistry							
Type of Course	SEC							
Course Code	M24CH6SEC300							
Course Level	300-399							
Course Summary	This course will enable students to understand about various types of processing methods and the production of various dairy products.	of milk,						
Semester	6 Credits 3	Total Hours						
Course Details	Learning Approach Lecture Tutorial Practical Other	s						
	MANGE MAN	45						
Pre-requisites, if any	THOM EDGE IS POWER							

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Critically evaluate the quality and nutritive value of milk by knowing the general chemical composition	Е	1,4
2	Understand the techniques of milk processing	U	1,4
3	Evaluate different physicochemical properties of milk	Е	1
4	Create a thorough knowledge about different types of milk.	С	1,4
5	Classify various types of Milk products based on their composition and processing methods	An	1
*Remen Interest	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate I, (I) and Appreciation (Ap)	Create (C), Ski	ll (S),

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1 Composition and processing of Milk	1.1Milk- Definition, General composition of Milk- Water, Protein, Lactose and Fat (Cow, Buffalo, Goat and Human). Nutritive value of milk. (4) Colostrum: Significance, Composition, difference between normal milk and colostrum. (2) Adulteration of Milk and Detection. Preservatives and Neutralizers. (3) Quality assurance – FSSAI, PFA, AGMARK. (1)		12	1
)	5	ANASIUS		
5	1.2	Importance of Milk processing- Filtration, Clarification, Boiling, Homogenization and Pasteurization. (2)	3	2
2.2.1- Colour, Flavour, Density, Specific gravity, Freezing point, Boiling point, Surface tension, Viscosity, Specific heat, Refractive index, Electrical conductivity, Germicidal property, pH and acidity.			15	
	3.1	Standardised milk – definition – merits. (1) Homogenised Milk, Flavoured Milk, Vitaminised Milk, Toned Milk, Incitation Milk, Vegetable Toned Milk, Condensed Milk – Definition Composition and Nutritive Value. (3)	4	2
3. Special milk and Milk products	3.2	Butter – definition – composition – theory of churning – desibutter – salted butter.(2) Ghee – major constituents – common adulterants added to ghee and their detection – rancidity – definition – prevention. (2) Cream- definition-composition-chemistry of creaming process. (2)	6	2
	3.3	Fermented milk products – Fermentation of milk – Definition, Conditions.(1) Yogurt and Curd (Introduction- methods of production). (1) Khoa And Chana -Definition – Preparation Of Khoa and Chana- Sweets – Peda, Burfi, Gulab jamun , Rasogolla. (2) Milk powder – Definition – Need For Making milk powder	5	

		- Drying Process – Types of Drying(1)		
4		Teacher specific Contents		
	(10 be evaluated internally)			
Teaching and Learning Approach	Classroo Lecture and expo videos, a question guideline supervis	m Procedure (Mode of transaction) Sessions, Interactive Sessions including discussions, demonstrations, eriments to engage students actively and visual aids like presentations, and models to enhance understanding. Encourage students to ask s during or after the lectures. Begin with safety instructions and es for lab work. Allow students to conduct experiments under ion (for lab work).		

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
ANON	Part B (Short essay) -4 out of 6 x 5 = 20 marks
	Part C (Long essay) -2 out of $4 \times 10 = 20$
	marks

References

- 1. R Jenness and Patom S., Principles of Dairy Chemistry, Wiley, 2017.
- 2. K.S.Rangappa and K.T Acharya., Indian Dairy Products, Asia Publishing House, 1975.
- 3. F.P. Wong., Fundamentals of Dairy Chemistry, Springer, 2012.
- 4. L.M. Lampert., Modern Dairy products, Chemical Publishing Company Inc., 1998.
- 5. J N Warner, Principles of Dairy Processing, Wiley, 1976.
- 6. Sukumar De, Outlines of Dairy technology, Oxford, 2001.
- 7. D Richmond, Laboratory Manual of Dairy Analysis, Biotech Books, 200

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS							
Programme	B.Sc. (honours) Chen	nistry						
Course Name	Research Methodolog	Research Methodology for Chemistry						
Type of Course	VAC							
Course Code	M24CH6VAC300							
Course Level	300-399							
Course Summary	This course covers a w a scientific project in c practical exercises, c knowledge to real-wo and knowledge necessar research effectively in	This course covers a wide range of topics aimed at preparing students to conduct a scientific project in chemistry. Throughout the course, students might engage in practical exercises, case studies, and laboratory work to apply theoretical knowledge to real-world situations. The aim is to equip students with the skills and knowledge necessary to design, conduct, analyse, and communicate scientific research effectively in the field of chemistry.						
Semester	6	-	Credits		3	Total Hours		
Course	Learning Approach	Lecture	Tutorial	Practical	Others			
Details	1	3				45		
Pre- requisites, if any		CEDOE IS A	ower		1	1		

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Apply the tools for literature survey in chemistry in doing and reporting a chemistry project.	А	1,2,6
2	Describe the methodology of scientific research.	U	1,6
3	Apply the knowledge of scientific writing in preparing a project report.	А	1,6
4	Discuss the ethical aspects of chemistry research.	U	1,3,6
5	Apply the basic principles of research methodology in the conducting, reporting and presenting a chemistry project.	А	1,6
*Remen Interest	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E) (I) and Appreciation (Ap)	, Create (C), Sk	xill (S),

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1.1	Print: Sources of information: Primary, secondary, tertiary sources; Journals: Journal abbreviations, abstracts, current titles, reviews, monographs, dictionaries, text-books, current contents, Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance Index, Author Index, Formula Index, and other Indices with examples	б	1
1. Literature Survey	1.2	Digital: Web resources, E-journals, Journal access, TOC alerts, Hot articles, Citation index, Impact factor, H-index, E-consortium, UGC infonet, E- books, Internet discussion groups and communities, Blogs, Preprint servers, Search engines, Scirus, Google Scholar, ChemIndustry, Wiki- Databases, ChemSpider, Science Direct, SciFinder, Scopus.	6	1
	1.3	Information Technology and Library Resources: The Internet and World Wide Web. Internet resources for chemistry. Finding and citing published information.	3	1
2. Methods of Scientific Research and Writing Scientific Papers	2.1	Reporting practical and project work. Writing literature surveys and reviews. Organizing a poster display. Giving an oral presentation.	5	2,3
	2.2	Writing scientific papers – justification for scientific contributions, bibliography, description of methods, conclusions, the need for illustration, style, publications of scientific work.	5	2,3
	2.3	Ethical challenges in chemistry research, Responsible conduct of research, Writing Ethics, Avoiding plagiarism.	5	4
		Project		

3	3.1	 Training on writing a project report: Project selection Literature Survey Conducting the project Preparing a report Preparing and displaying a poster ICT enabled oral presentation 	15	1,2,3,4,5
4		Teacher specific Contents		

	Classroom Procedure (Mode of transaction)
Teaching and Learning	Lectures, discussions, group activities, presentations by students.
Approach	

MODE OF ASSESSMENT

A. Continuous Comprehensive Assessment B. End Sen	neste <mark>r</mark> Examination
(CCA) Theory Tota	al = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks Part A (Shor	rt answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar marks	
Part B (Shor	rt essay) -4 out of 6 x 5 = 20 marks
Part C (Long	$g essay) - 2$ out of $4 \ge 10 = 20$
marks	

References

- 1. A T Tyowua, A Practical Guide to Scientific Writing in Chemistry: Scientific Papers, Research Grants and Book Proposals, CRC Press. 2023.
- 2. F. H. Jardine, How to do your Student Project in Chemistry, Springer, 1994.
- 3. A M. Coghill and L R Garson, The ACS Style Guide: Effective Communication of Scientific Information, Oxford University Press, 2006.
- 4. V Bairagi, M V. Munot, Research Methodology: A Practical and Scientific Approach, CRC Press, 2019.
- 5. H G Deal, Science Research Writing for Native and Non-Native Speakers of English. World Scientific Publishing Europe Ltd, 2020.
- 6. D Angelo, G John, Ethics in Science: Ethical Misconduct in Scientific Research, Chapman and Hall/CRC, 2018.
- 7. https://www-library.ch.cam.ac.uk/list-useful-databases
- 8. <u>https://fordham.libguides.com/Chemistry/Databases</u>

H	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B.Sc. (honours) Chem	istry				
Course Name	Coordination and Org	Coordination and Organometallic Chemistry-1				
Type of Course	DCC					
Course Code	M24CH7DCC400					
Course Level	400-499					
Course Summary	This course provides a and reactivity of coordin and catalytic application	comprehen nation comp ns of organ	nsive under plexes, elec pmetallic co	standing of tronic spectr ompounds.	the structural properties	re, bonding, es, synthesis,
Semester	7 ANN	+	Credits	60	4	Total Hours
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	
	READIN	4	NER S			60
Pre-requisites, if any	Inorganic Chemistry-2	2	n C	3/		

CO No.	Expected Course Outcome	Learning Domains *	PSO No			
1	Compare the stability of metal complexes	Е	1,2			
2	<i>Examine</i> the structure and bonding in coordination and organometallic compounds using the concepts of crystal field theory and Molecular orbital theory	An	1,2			
3	<i>Construct correlation diagrams and explain</i> the spectral properties of metal complexes	А	1,2			
4	Analyze the reactions of organometallic compounds	An	1,2			
5	<i>Examine</i> the catalytic properties of various organometallic compounds and their applications	An	1,2,4			
*Remen Interest	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Unit	Course description	Hrs	CO No.
	1.1	Classification of complexes based on coordination numbers and possible geometries, σ and π bonding ligands such as CO, NO, CN ⁻ , R ₃ P, and Ar ₃ P.	2	1
1.Structure	1.2	Stability of complexes, kinetic and thermodynamic aspects of complex formation - Irving William order of stability.	2	1
and Bonding in Coordination Complexes	1.3	Splitting of d orbitals in octahedral, tetrahedral, square planar, square pyramidal and triagonal bipyramidal fields.	2	1
	1.4	Crystal Field Stabilization Energy (CFSE) and Dq values, Jahn Teller (JT) distortion $(d_1 - d_{10})$ systems), static and dynamic JT distortion, consequences of JT distortion, theoretical failure of crystal field theory, Ligand Field Stabilization Energy (LFSE) evidence of covalency in the metalligand bond.	4	1
	1.5	Ligand field theory and Molecular Orbital theory - diagrams for octahedral and tetrahedral complexes without and with π -bonding, experimental evidences for π -bonding.	5	2
2.Electronic spectra of complexes 2.1		Electronic Spectra of complexes: Term symbols and microstates of d_n systems, Racah parameters, splitting of terms in weak and strong octahedral and tetrahedral fields, selection rules for electronic transitions - effect of spin-orbit coupling and vibronic coupling.	5	3
	2	² Correlation diagrams: Orgel and Tanabe – Sugano diagrams.	3	3
	2	Electronic spectra of metal complexes and their interpretation. Charge transfer spectra, luminescence spectra.	e 5	3
	2	6 Electronic spectra of lanthanide and actinide complexes.	2	3
		Organometallic Compounds-Synthesis, Structure and Bonding		

	3.1	Ligands and their bonding with metals: CO, CN, NO, N ₂ , H ₂ , alkene, alkyne, PR ₃ , arenes, dienes, allyl, carbenes – carbynes (Fischer and Schrock), alkyl	5	1
	3.2	Preparation of metal nitrosyl, dinitrogen, alkyl, aryl, alkene, alkyne, carbenes - carbynes (Fischer & Schrock), arene and phosphine complexes	3	1
3	3.3	18 electron rule	1	1
	3.4	Bridging and non-bridging (Polynuclear) metal carbonyls, IR spectra of metal carbonyls, carbonyl clusters, Wade-Mingos rules.	3	1
	3.5	Isolobal analogy	1	1
	3.6	Cyclopentadienyl complexes - fluxionality	1	1
	3.7	Ferrocene: Structure and bonding	1	1
4. Reactions of Organometallic Compounds and Catalysis	4.1	Unique reactions in organometallic chemistry: Oxidative addition (concerted and step-wise, C _{aryl} - H activation – orthometallation), reductive elimination, migratory insertion (1,1 and 1,2), β - hydride abstraction/elimination. Agostic interactions, σ -bond metathesis (Zr(IV) and Lu(III)	6	4
	4.2	Homogeneous/Heterogeneous catalysis: Tolman catalytic loops, Hydrogenation by Wilkinson Catalyst, Olefin isomerization, Wacker process, Hydroformylation (Co & Rh), Monsanto & Cativa acetic acid process, Ziegler-Natta Polymerization	7	5

		including metallocene based Zr catalyst, Water gas shift reaction, the Fischer-Tropsch reaction (synthesis of gasoline)		
	4.3	Grubbs (I generation & II Generation) and Schrock catalysts – Preparation and characteristics, Olefin metathesis, ROMP	2	5
5.		Teacher specific Contents (To be evaluated internally)		

Teaching	Classroom Procedure (Mode of transaction) Lecture,
and	Practical, Discussion
Approach	A SUL

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
SINLEDO	Part C (Long essay) -2 out of $4 \ge 10 = 20$
A SHOT	marks

References

- 1. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 3rdEdn., Interscience, 1972.
- 2. J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4thEdn., Pearson Education India, 2006.
- 3. K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.
- 4. F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reaction, John Wiley & Sons, 2006.
- 5. B.E. Douglas, D.H. McDaniel, J.J. Alexander, Concepts and Models of Inorganic Chemistry, 3rdEdn., Wiley-India, 2007.
- 6. R.S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 7. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications, Wiley-India, 2010.
- 8. J.D. Lee, Concise Inorganic Chemistry, 4thEdn., Wiley-India, 2008
- 9. R. G. Wilkins, Kinetics and Mechanisms of Reactions of Transition Metal Complexes, Wiley VCH, 2002.
- 10. G. A. Lawrance, Introduction to Coordination Chemistry, John Wiley & Sons Ltd, 2010.
- 11. C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, Pearson, 2012.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme/ Discipline	B.Sc. (honours) Chemi	istry				
Course Name	Organic Chemistry-4					
Type of Course	DCC					
Course Code	M24CH7DCC401					
Course Level	400 -499	400 -499				
Course Summary	The course discusses organic reaction mechanism of aliphatic/aromatic nucleophilic substitution reactions, Elimination reactions, esterification and ester hydrolysis. Physical organic chemistry explains free energy relationship and methods of determining reaction mechanism. Practical part of the course synthesis of biologically important molecule and using software to draw and manipulate different organic shemistry structures and reactions.					
Semester	7 8		Credits		4	Total Hours
Course Details	Learning Approach	Lecture 4	Tutorial	Practical	Others	60
Pre- requisites, if any		EDGEIS	POWER			

CO No.	Expected Course Outcome	Learning Domains *	PSO No			
1	Predict the reaction mechanism and rationalize the outcome of various organic reactions and obtain practical experience	А	1,2			
2	Illustrate and practice the transformations and rearrangements of reactive intermediates	An	1,2,3			
3	Suggest a method to determine or verify an organic reaction mechanism	S, C	1,3			
4	Understand mechanism of various organic reactions and correlate physical chemistry with organic reactions	E, U	1,3			
5	Performs raw mechanisms and schemes using chemistry software and Prepare different organic molecule	S, A	1,4			
*Reme Skill (S	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1 Organic Reaction mechanism and Physical Organic Chemistry	1.1	Organicreactionmechanismsofaliphatic/Aromaticnucleophilicsubstitutionreactions: SN^1 , SN^2 , SE^1 , SE^2 - SN^2Ar , SN^1Ar , S_{RN}^1 and BenzynemechanismsElimination reactions: E^1 and E^2 , E^1CB A comprehensive study on the effect ofsubstrate,reagent,leavinggroupparticipation,salt effect and special salteffect on nucleophilicsubstitution (SN²andSN¹)andelimination E^1 and E^2)reactions.StereochemistryofElimination-Eliminationat orbon-Bredt'srule-Chugavreaction-elimination	6	1,4
	1.2	Mechanisms of esterification and ester hydrolysis-acyl oxygen and alkyl oxygen cleavage: AAC ² , AAC ¹ , AAL ¹ , BAC ² and BAL ¹ mechanisms	4	1,4
	1.3	Methods of determining reaction mechanisms-primary and secondary kinetic isotope effects-kinetic versus thermodynamic control of product formation-linear free energy relationship-Hammet and Taft equation-Curtin-Hammett principle- Hammond postulate	5	3,4

2. Organic reactions and Intermediates	2.1	Wagner-Meerwein, semi-pinacol, Dienone-phenol, Benzilic acid, Noyori	8	2
Inter inculates		annulation, Prins reaction.		
		Dieckmann, Stobbe, Darzen and		
		acyloin condensations (radical),		
		Shapiro reaction and Julia elimination,		
		Woodward and Prevost hydroxylation		
		reactions.		
		Wittig and related reactions, Peterson		
		olefination.		
	2.2	Carbenes , Nitrenes, Free radicals	7	2
		Structure of carbenes: singlet and triplet-		
		generation of carbenes-reactions of		
	15	carbine-addition and insertion reactions.		
		Structure, generation and reactions of	2	
		nitrene and related electron deficient		
	19	nitrene intermediates.		
	11	Curtius, Lossen, Schmidt reactions.		
		Named reactions involving radical		
		intermediates: Barton Mc Combi		
		deoxygenation and decarboxylation,		
	11-	McMurry coupling- Autooxidation		
		reaction	2	
		i) Practice Chemdraw (Use ChemDraw	15	5
		different organic chemistry structures		
		and reactions)		
		ii)Virtual Synthesis of aspirin (enable students to undertake an aspirin		
		synthesis, perform		
		recrystallization, Thin Layer		
		yield using a digital resource).		
		iii)Synthesis of aspirin		
3		(Experimentally		
3. Activity 1	3.1	determine the acid dissociation constant		
•		Acids, correlate the Ka values with		
		known substituent constants (σx) and		
		use the correlation generated above to		
		calculate the substituent constants for		
		compounds.		

4.Activity 2		Preparation of Organic Compounds 15 5
		1) Acetanilide - p-nitroacetanilide - p-
	3.2	nitroaniline
		2) Methyl benzoate - m-
		nitromethylbenzoate - m-
		nitrobenzoic acid
		3) Acetanilide - p-bromoacetanilide -
		p-bromoaniline
		4) Benzophenone – benzophenone
		oxime - benzanilide
		5) Aniline - 2,4,6-tribromoaniline -
		1,3,5-tribromoaniline
		6) Benzaldehyde-benzoin-benzilic
		acid
		7) Aniline-sulphanilic acid-
		methylorange
	1-	8) O-Toluidine-o-methyl acetanilide-
	15	N-acetyl anthranilic acid
	11	9) Aniline-acetanilide-p-
		nitroacetanilide
	14	Ser and se
5.		Teacher Specific Contents
		(To be evaluated internally)
		MANGA
		EDGE IS PA

Teaching	Classroom Procedure (Mode of transaction)
and	Classroom lecture
Learning Approach	Demonstration and practical training in laboratory

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \times 10 = 20$ marks

References

1. Morrison, R.T.; Boyd, R.N.; Bhattacharjee, S.K. *Organic Chemistry*; 7th ed.; Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2011.

- 2. Graham Solomon T.W.; Fryhle, C.B.; Snyder, S.A. *Organic Chemistry*; Wiley, 2014.
- 3. McMurry, J. Organic Chemistry; 7th ed.; Cengage Learning, 2013.
- 4. Clayden, J; Greeves, N; Warren, S. *Organic chemistry*; Oxford University Press, 2012.
- 5. Finar, I. L. *Organic Chemistry*; Vol. 1& 2; Dorling Kindersley (India) Pvt. Ltd (Pearson Education).
- 6. Jain, M. K.; Sharma, S.C. *Modern Organic Chemistry;* Vishal Publishing Co., 2010.
- 7. Bahl, A.; Bahl, B.S. Advanced Organic Chemistry; S. Chand, 2010.
- Carey, F. A.; Sundberg, R. J.; Advanced Organic Chemistry: Part A: Structure and Mechanisms; Springer Science & Business Media, 2007.
- 9. Norman, R. O. C.; Coxon, J. M. *Principles of Organic Synthesis*; Routledge, 2017.
- 10. Pine, S. H. Organic Chemistry; Tata McGraw-Hill, 2014.
- Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry; 5th ed.; Pearson Education, 2005.
- 12. Ahluwalia, V. K.; Dhingra, S. Comprehensive Practical Organic Chemistry- Qualitative Analysis; University Press, 2000.
- 13. Mann, F. G.; Saunders, B. C. *Practical Organic Chemistry*; 4th ed.; Pearson Education, 2009.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme	B.Sc. (honours) Ch	nemistry					
Course Name	Physical Chemistr	y 4					
Type of Course	DCC						
Course Code	M24CH7DCC402						
Course Level	400-499	400-499					
Course Summary	This course deals wit different types of rea	th various as ctions based	spects of sur 1 on chemica	face chemistry al kinetics.	,gaseous stat	e and	
Semester	17	7 Credits			4	Total	
Course Details	Learning Approach	Lecture	Tutorial	P <mark>ractical</mark>	Others	Hours	
		4		h		60	
Pre-requisites, if any		HAMAN	GALA	1^{\prime}			

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Students can understand the molecular velocities of gasses and describe its distribution with temperature and comprehends the terms mean free path, collision diameter effusion etc	K, U	1,2
2	Illustrate the theories of reaction rates and correlate the thermodynamically measurable parameters.	U, A	1,2
3	Compare the nature of reactions in gas as well as in solvent phase. Interpret the effect of ionic strength and dipole moment on reaction rate.	U, An	1,2
4	Describe the theories and applications of adsorption with the help of adsorption isotherms. Could evaluate the surface area.	К, А	1,2,4
5	Explain different methods for the molar mass determination of macromolecules.	A, An	1,2

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description			CO No.	
1.Kinetic theory of gases	1.1	Derivation of Maxwell's law of distribution of w graphical representation, experimental verification law, most probable velocity, derivation of avera and most probable velocities.	5	1		
	1.2	collision diameter, collision frequency in a single gas and in a mixture of two gases, mean free path, frequency of collision, effusion, the rate of effusion, time dependence of pressure of an effusing gas, the law of corresponding states, transport properties of gases.			1	
	2.1	Theories of reaction rates: - potential energy Conventional transition state theory, Compariso collision theory and conventional transition theorie	4	2		
	2.2	Thermodynamic formulation of the reaction rate-Eyring equation. Significance of ΔG^{\neq} , ΔH^{\neq} and ΔS^{\neq} , volume of activation. Effect of pressure and volume on velocity of gas reactions. Reactions in solution: Effect of solvent on reaction rate, cage effect, effect of dielectric constant and ionic strength on reaction rate - Bronsted-Bjerrum equation.		6	2,3	
3. Surface Chemistry 3.1		Multilayer adsorption-BET theory, Use of BET isotherms for surface area determination.3		4		
	3.2	 Application of Langmuir adsorption isotherm in surface catalysed reactions, the Eley-Rideal mechanism and the Langmuir-Hinshelwood mechanism, flash desorption. Macromolecules: Different averages, methods of molecular mass determination - osmotic, viscosity, sedimentation and light scattering methods. 	7		4,5	
	1. Construction of phase diagram of					
-------------	---	--				
	three component system					
4. Activity	with one pair of partially miscible liquids.					
	2. Kinetics of simple reactions eg. Acid					
	hydrolysis of methyl/ethyl acetate.					
	3. Kinetics of reaction between $K_2S_2O_8$ and					
	KI.					
	4. Data analysis of kinetic experiments					
	using spreadsheet					
	program (determination of rate constant)					
	5. Polarimetry:					
	a. Kinetics of the inversion of					
	sucrose in presence of HCl.					
	b. Determination of the					
	concentration of a sugar solution					
	6. Refractometry:					
	a. Identification of pure organic					
	liquids and oils					
	b. Determination of molar					
	refractions of pure liquids					
	c. Determination of					
	concentration of solutions					
	(KCl- Water, Glycerol—					
	water)					
	d. Determination of molar refraction					
	of solids					
	e. Study of complex formation					
	between potassium iodide and					
_	mercuric iodide system					
5	Teacher Specific Contents					
	(To be evaluated internally)					
L						

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	 Lecture Sessions, (Chalk & Board, Power point presentation) Interactive Sessions and simulations, Visual aids like videos and models to enhance understanding. Peer discussions. Laboratory experiments and hands-on training

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \times 10 = 20$
	marks

References

- 1. K. J. Laidler, Chemical kinetics, 3rdedn, Pearson education, 2004.
- 2. I.N. Levine, Physical Chemistry, Tata McGraw Hill
- 3. R. P. Rastogi, R. R. Misra, An Introduction to Chemical Thermodynamics, 6th edn., Vikas Pub. Pvt. Ltd. (2003).
 - 4. P. Atkins and J Paula, The elements of Physical chemistry, 7thedn., Oxford University Press.
 - K.K. Sharma, L.K. Sharma, A Textbook of Physical Chemistry, 4th edn, Vikas publishing House.
 - Puri, Sharma and Pathania, "Principles of Physical Chemistry", 48th Edition, Vishal Publishing Company
 - 7. Barrow, G.M. "Physical Chemistry", Tata McGraw-Hill (2007).
 - 8. Castellan, G.W. "Physical Chemistry", 4th Ed. Narosa Publishing House (2018).

Suggested Readings

- 1. R P W Atkins, "Physical Chemistry", Oxford University Press (12th Edition)
- 2. R J Silby and R A Alberty, M G Bawendi "Physical Chemistry", (4th Edition) John Wiley & Sons
- 3. J. Rajaram, J. C. Kuriakose, Chemical thermodynamics: classical, statistical and irreversible, Dorling Kindersley (India), New Delhi, ©2013
- 4. Glasstone and Lewis, Elements of Physical Chemistry, Macmillan

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B.Sc. (honours) Ch	emistry				
Course Name	Molecular Spectro	scopy in	Structu	ral Analys	is	
Type of Course	DCE					
Course Code	M24CH7DCE400					
Course Level	400-499	400-499				
Course Summary	This course explores determination and the	different eir wide	t spectros applicatio	copic technons.	niques use	ed in the structural
Semester		ANAS	Credits		4	Total Hours
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	
	1 1	4				60
Pre-requisites, if any		NLEDO	EIS PO	and a		1
)	

CO No.	Expected Course Outcome	Learnin g Domains *	PSO No
1	Illustrate the basic concepts of Infrared spectroscopy	U	1,2
2	Describe the principles of electronic spectroscopy and apply the principles to systems	А	1,2
3	Demonstrate the underlying principles of NMR spectroscopy	U	1,2
4	Explain the concepts of mass spectroscopy	U	1,2,3
5	Deduce the structure of organic compounds by means of combined spectral techniques such as IR, UV, NMR and Mass.	Е	1,3
*Rem Intere	nember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), est (I) and Appreciation (Ap)	Create (C), Skil	l (S),

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1 Infrared Spectroscopy	1.1	Hooke's law, bond properties and absorption trends, Fundamental vibrations, characteristic regions of the spectrum (fingerprint and functional group regions), influence of substituent, ring size, hydrogen bonding & solvent effect.	3	1
and Electronic Spectroscopy	1.2	IR spectra of polar O-H bonds (alcohols and carboxylic acids), C=C bonds (olefins and arenes), C=O (Acids, Aldehydes, Ketones, and Esters) bonds and C-H bonds (alkanes, alkenes, alkynes)	4	1
	1.3	Nature of electronic transitions, Chromophore, Auxochrome, representation of electronic spectra, Bathochromic shift, Hypsochromic shift, Hyperchromic shift, Hypochromic shift,	2	2
	1.4	Influence of substituent, solvent effect, conjugation, ring size and strain on spectral characteristics	2	2
	1.5	Calculations of λ_{max} of enones, aromatic hydrocarbons and conjugated polyenes based on Woodward-Fieser and Fieser- Kuhn rules.	4	2
2	2.1	NMR phenomena based on ¹ H & ¹³ C nuclei, ¹ H & ¹³ C NMR spectra, Relaxation processes.	3	3
Nuclear Magnetic Resonance	2.2	Chemical shift, magnetic anisotropy and shielding/deshielding, chemical equivalence and number of	3	3

Spectroscopy		NMR signals. Population densities of nuclear spin		
		states- intensity of the signal.		
	2.3	Spin-spin splitting, coupling constant, geminal coupling, Karplus curve, Pople notation - AX, AX ₂ , A ₂ X ₃ , AB, AB ₂ type coupling, first order and non-first order spectra, homotopic, enantiotopic and diastereotopic protons.	4	3
	2.4	Simplification non-first order spectra to first order spectra: spin decoupling and double resonance, off resonance decoupling, NOE and cross polarization, DEPT	5	3
3 Mass Spectrometry	3.1	Basic principles. Ionization methods: Gas phase ionization methods– Electron impact ionization (EI) and Chemical Ionization (CI); Desorption ionization methods – Field desorption ionization (FD), Fast atom bombardment (FAB), Matrix assisted laser desorption ionization (MALDI); Plasma desorption ionization (PD). Comparison between EI and CI. Tandem mass spectrometry (MS-MS) (concept only). Separation techniques - Time of Flight analyser and Quadrupole Mass Analyzer. Nitrogen and Ring rules.	7	4
	3.2	Fragmentation rule (EI only), types of peaks involved(molecular ion, quasi molecular ion, isotopic peak, base peak, parent ion, daughter ion, fragment ion, metastable ion).Fragmentation pathways – alkanes, β cleavage (allylic and benzylic), α cleavage (carbonyl and heteroatom like ether),McLafferty rearrangement, Retro Diels Alder (olefins), ortho effect (aryl ring), elimination of neutral molecules (H2O, CO2). HRMS.	8	4

4 Spectrum Analysis	4.1 Identification of structures of organic compounds based on the data from Mass spectrometry, UV-Vis, IR, ¹ H NMR and ¹³ C NMR spectroscopy. Interpretation of the given UV-Vis, IR and NMR spectra.	15	5
5	Teacher Specific Contents		
	(To be evaluated internally)		
	Classroom Procedure (Mode of transaction)		
Teaching and Learning Approach	Lecture (Chalk & Board, powerpoint presentation, flipped classrood Group Discussion – Thought problems; mind mapping Peer interaction Demonstration using simulations / models	om)	

MODE OF ASSESSMENT

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks , Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks

- 1. D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy, 3rd Edn., Brooks Cole, 2000.
- 2. A.U. Rahman, M.I. Choudhary, Solving Problems with NMR Specroscopy, Academic Press, 1996.
- 3. L.D. Field, S. Sternhell, J. R. Kalman, Organic Structures from Spectra, 4th Edn., John Wiley & sons, 2007.
- 4. C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy, 4th Edn., Tata McGraw Hill, 1994.
- 5. D.F. Taber, Organic Spectroscopic Structure Determination: A Problem Based Learning Approach, Oxford University Press, 2007.
- 6. H. Gunther, NMR Spectroscopy, 2nd Edn., Wiley, 1995.
- 7. R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectroscopic Identification of

Organic Compounds, 5th Edn., Wiley, 1991.

- 8. D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry, 6th Edn., McGraw-Hill, 2008.
- 9. W. Kemp, Organic Spectroscopy, 2ndEdn., Macmillan, 1987.
- 10. F. Bernath, Spectra of Atoms and Molecules, 2nd Edn., Oxford University Press, 2005.
- E.B. Wilson Jr., J.C. Decius, P.C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Pub., 1980.

Mar Athanasius College (Autonomous), Kothamangalam

FYUGP SYLLABUS

Programme/ Discipline	B.Sc. (honours) Chemis	try				
Course Name	Organic Chemistry-5					
Type of Course	DCE					
Course Code	M24CH7DCE401					
Course Level	400 -499					
Course Summary	The course provides topics in advanced stereochemistry and confirmation, photochemical reactions, name reactions of carbonyl compounds and pericyclic reactions					
Semester	7	Credits 4 Total Hours				Total Hours
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	
	N ST	4	EI	NI		60
Pre-requisites, if any	TANK	~)ee	6		

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Master in determining and differentiating chirality, topicity of organic molecules and explore the chemical consequences and applications of conformational equilibria.	С	1,2
2	Understand the basic concepts of organic photochemistry and photochemical reactions	U, K	1,2
3	Know the different reactions of carbonyl compounds	K, U	1,2
4	Distinguish and predict the stereoselectivity, regioselectivity, and feasibility of pericyclic reactions and their applications	E, U	1,3
5	Understand the different methods for interconversion of organic compounds	A, S	1,3
*Remen Interes	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E t (I) and Appreciation (Ap)	?), Create (C), S	Skill (S),
1	(1) when the common (14)		

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1. Advanced Stereochemistry & Conformation	1.1	Axial, planar and helical chirality with examples, stereochemistry and absolute configuration of allenes, biphenyls and binaphthyls, ansa and cyclophanic compounds, spiranes, exo-cyclic alkylidenecycloalkanes. Helicenes (P, M nomenclature)	4	1
	1.2	Topicity and prostereoisomerism, topicity of ligands and faces as well as their nomenclature, NMR distinction of enantiotopic/diastereotopic ligands.	4	1
	1.3	Conformation and reactivity of cyclohexane systems; dehalogenation, dehydrohalogenation, semipinacolic deamination and pyrolytic eliminations, Grob fragmentation. Chemical consequence of conformational equilibrium. Conformation and rate of reaction (rate of acetolysis and saponification)	4	1
	1.4	Chiroptical Properties: ORD, CD, Axial halo ketone rule, octant rule-Application	3	1
2. Organic Photochemistry	2.1	Organic Photochemistry-Introduction. Photochemical versus Thermal reactions. Electronic excitation and fate of excited molecules. Introduction-Jablonski diagram. Fluorescence and phosphorescence, inter system crossing- sensitization and quenching	7	2
	2.2	Photochemical reactions:Photo-Fries rearrangement. Photochemical reactions: Norrish type I and II reactions of acyclic ketones, Paterno- Buchi reaction and Photo- Fries reaction (with mechanisms), Barton (Nitrite ester reaction), Di- π methane rearrangement- Hofmann-Loffler-Freytag reaction- cis-trans isomerisation- photochemistry of vision	8	2, 5
	3.1	Mechanisms of Aldol condensation, Perkin's condensation, Claisen condensation, Claisen-Schmidt reaction, Benzoin condensation, Knoevenagel reaction, Cannizzaro reaction	5	3,5

		Oxidation and reduction reactions- Baeyer-Villiger		3,5
		oxidation, Oxidation using Cr (VI) reagents, (Jones		
		oxidation, PDC, PCC oxidation), Fenton Oxidation,		
	3.2	Johnson-Leumix oxidation, Peroxide oxidation-	10	
3.		Clemmensen, Wolff-Kishner reduction, LiAlH4 and		
Reactions of		NaBH ₄ reductions, Meerwein-Ponndorf-Verley		
Aldehydes and Ketones and		reduction-Enantio selective reduction-CBS reduction-		
alpha, beta		Heterogeneous reduction using transition metals (Pt,		
unsaturated		PD, Ru), Reduction using hydrazine.		
compounds		Structure and reactions of α , β - unsaturated carbonyl		
		compounds involving electrophilic and nucleophilic		
		addition-Michael addition, Mannich reaction,		
		Robinson annulations, Ene reaction		
		Classification: Electrocyclic Signatropic		1
4.	1	Cycloaddition, chelotropic, Ene and Dyotropic		4
Concerted	3.1	reactions. Woodward -Hoffmann rules - Frontier	5	
Reactions		- PMO method (for electrocyclic and		
		cycloaddition reactions only).		
		Pericyclic reactions in organic synthesis such as Claisen Cope Wittig and Mislow-Evans		
		rearrangements. Diels-Alder and Ene reactions,		
	3.2	Patterno Buchi reaction	5	
	1	(with stereochemical aspects), dipolar cycloaddition (introductory)		
-		Laincheadar annabria alimination		4
		reactions: Cheletropic elimination Cope		4
	3.3	Elimination reaction, Acetates and Xanthates	5	
		(Chugaev reaction).		
5.		Teacher Specific Contents		
		(To be evaluated internally)		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Classroom lecture Demonstration and practical training in laboratory

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 70 marks, Duration 2 hrs
Theory Total = 30 marks	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	marks
ANASI	Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
	Part C (Long essay) -2 out of $4 \times 10 = 20$ marks

- 1. R. Bruckner, Advanced Organic Chemistry: Reaction Mechanisms, Academic Press, 2002.
- 2. F.A. Carey, R.A. Sundberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, 5th Edn., Springer, 2007.
- 3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2004.
- T.H. Lowry, K.S. Richardson, Mechanism and Theory in Organic Chemistry, 3nd Edn., Harper & Row, 1987
- 5. D. Nasipuri, Stereochemistry of Organic Compounds: Principles and Applications, 3rd Edn., New Age Pub., 2010.
- 6. D.G. Morris, Stereochemistry, RSC, 2001.
- 7. E.L. Eliel, S.H. Wilen, Stereochemistry of Organic Compounds, John Wiley & Sons, 1994.
- 8. N.J. Turro, V. Ramamurthy, J.C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science books, 2009.
- 9. N.J. Turro, Modern Molecular Photochemistry, Benjamin Cummings, 1980.
- 10. K.K.R. Mukherjee, Fundamentals of Photochemistry, New Age Pub., 1978.
- 11. Jerry March, M.B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th Edn., Wiley, 2007.
- 12. R.O.C Norman and J. M. Coxon, Principles of Organic synthesis, third edition.
- 13. Biswanath Dinda, Essentials of Pericyclic and Photochemical Reaction.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme/Discipline	B.Sc. (hono	urs) Chei	mistry			
Course Name	Quantum N	Aechanics	s and Gro	oup Theory		
Type of Course	DCE	DCE				
Course Code	M24CH7D0	M24CH7DCE402				
Course Level	400-499	400-499				
Course Summary	This course theory and i	covers th ts applicat	ne basic p tions.	rinciples of	f quantum i	mechanics and group
Semester	7		Credits		4	
Course Details	Learning Approach	Lecture 4	Tutorial	Practical	Others	Total Hours
Pre-requisites, if any	MAK					

l

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Demonstrate the fundamental concepts of quantum mechanics and describe its application to simple systems, and examine the correlation between angular and radial wave functions in	U	1
	determining orbital shapes.		
2	Recognize the most significant and elementary solutions of the Schrodinger equation in molecular quantum mechanics through a study of time-independent perturbation theory valence bond and	An	1
	molecular orbital theories.		
3	Deduce various symmetry elements in molecules to classify molecules into various point groups and develop the group	Е	1,4
	theoretical rules to generate group multiplication tables, matrix representations, and classes.		
4	Apply the concept of linear combination of atomic orbitals to hybridization and directed bonding in polyatomic molecules.	A, S	1
	·		•

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module	Units	Course description	Hrs	CO No.
	1.1	Classical mechanics: Failures, Black body radiation, Photoelectric effect, Compton effect and Atomic spectra of Hydrogen, Dual nature of matter – de Broglie equation, Heisenberg's uncertainty principle, and its significance. Schrodinger wave equation.	3	1
	1.2	Postulates of quantum mechanics - Well-behaved wave functions, Born's interpretation, Operator algebra. Laplacian and Hamiltonian operators. Eigen values and Eigen functions. Hermitian operators.	3	1
1. Quantum Mechanics (15 Hours)	1.3	Application to simple systems - Particle in 1-D box, normalization of wave function, Schrödinger equation for hydrogen atom – Coordinate system – cartesian and spherical polar coordinates, wave equation in spherical polar coordinates and its components.	3	1
	1.4	The postulates of time-dependent Schrödinger equation of motion, conservative systems, and time-independent Schrödinger equation. Quantization of angular momentum, quantum mechanical operators corresponding to angular momenta ((Lx, Ly, Lz), commutation relations between these operators, Ladder operator method for angular momentum, and space quantization.	3	1
	quantization.1.5Derivation of time-independent SWE–Wave functions and SWE of all simple systems. Free particle in one- dimension, particle in a one-dimensional box with infinite potential walls, particle in a one-dimensional box with finite potential walls-tunneling, particle in a three- dimensional box separation of variables, degeneracy.			
2.	2.1	Vibrational motion: Simple harmonic oscillator – force constant – zero point energy –Hermite equations and Hermite polynomials (qualitative idea only) Rotational		

Application to		Motion: coordinate systems, cartesian, The wave	5	2
Exactly Solvable		equation in spherical polar coordinates. Particle		2
Problems		moving in a ring, particle on a sphere - Rigid rotator –		
(15 Hours)		reduced mass - moment of inertia rotational energy		
		levels –Legendre equations and Legendre polynomials		
		(qualitative idea only)		
		The potential energy of hydrogen-like systems. The		
	2.2	wave equation in spherical polar coordinates:		
	2.2	separation of variables-R, theta, and phi equations and	6	
		their solutions, wave functions, and energies of		2
		hydrogen-like atoms. Orbitals-radial functions, radial		
		distribution functions, angular functions, and their		
		plots.		
	2.3	The postulate of spin by Uhlenbeck and Goldsmith, the discovery of the spin-Stern Gerlach experiment. Spin orbitals-construction of spin orbitals from orbitals and spin functions.	4	2
		Mathematical groups: Properties, Abelian groups, cyclic		
	3.1	groups, sub-groups, Symmetry elements, symmetry	4	3
		operations, determination of distinct symmetry		C
		operations of C _n and S _n .		
3.		Point group: Determination of point groups of		
Group Theory	3.2	molecules belonging to Cn, Cs, Ci, Cnv, Cnh, C∞v,	4	3
(15 Hours)		Dnh, D ∞ h, Dnd, Td, and Oh point groups. Crystal		
(15 Hours)		symmetry.		
		Similarity transformation, classes - C_{2v} and C_{3v} , GMT-		
	3.3	C_{2v} and C_{3v} , Matrix representation of symmetry	3	3
		elements of E, C _n , S _n , i, σ .		
	2.4	Reducible and irreducible representations- construction	4	
	3.4	of irreducible representation by standard reduction	4	3
		formula. Statement of Great Orthogonality Theorem		
		(GOT).		
	4.1	Properties of irreducible representations. Construction	Λ	2
	4.1	of character tables for C_{2v} , C_{2h} , C_{3v} , C_3 and C_{4v} .	4	3
	4.2	Applications in chemical bonding, construction of	Λ	Δ
Λ	4.2	hybrid orbitals with BF3 and CH4 as examples, and	4	4
۲. Chemical		symmetry-adapted linear combinations (SALC) of C_{2v} ,		
bonding and		C_{2h} , C_{3v} , C_{3} , and D_{3h} point groups.		

applications of Group Theory	4.3 Transition moment integral, vanishing of integrals, rules for vibrational absorption. Determination of the	7	4	
(15 Hours)	symmetry of normal modes of H ₂ O and NH ₃ ,	,	т	
	Complementary character of IR and Raman spectra.			
	Electronic transitions due to the carbonyl chromophore			
	in formaldehyde.			
_	Teacher Specific Contents	1		
5 (To be evaluated internally)				
	Classroom Procedure (Mode of transaction)			
Teaching and Learning Approach	Lecture (Chalk & Board, PowerPoint presentation, flipped classro Group Discussion – Thought problems; mind mapping Peer interaction Demonstration using simulations/models	oom)		

A. Continuous Comprehe	ensive Assessment	B. End Semester Examination
(CCA)	1	Theory Total = 70 marks, Duration 2 hrs
Theory Total $= 30$ marks	CAM .	Part A (Short answer) -10 out of $12 \ge 20$
Quiz, Test Papers, seminar	E SULED	marks
-		Part B (Short essay) $- 6$ out of 9 x 5 = 30 marks
		Part C (Long essay) -2 out of $4 \times 10 = 20$
	5	marks

- 1. P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics, 4thEdn., Oxford University Press, 2005.
- 2. R.K. Prasad, Quantum Chemistry, New Age International, 2001
- 3. Mc Quarrie, J. D. Simon, *Physical Chemistry A molecular Approach*, Viva Books.
- 4. T. Engel, Quantum Chemistry and Spectroscopy, Pearson Education, 2006.
- 5. F.A. Cotton, Chemical Applications of Group Theory, 3rdEdn., Wiley Eastern, 1990.
- 6. S. Swarnalakshmi, T. Saroja, R.M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, Universities Press, 2008.
- 7. A.S. Kunju, G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2010.
- 8. K.Veera Reddy, Symmetry and Spectroscopy of molecules, New Age International (P) Ltd, 1999.
- **9**. C.N. Datta, *Lectures on Chemical Bonding and Quantum Chemistry*, Prism Books Pvt.Ltd., 1998.
- 10. F.L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, second edition, 1990.
- 11. P.W. Atkins and R.S. Friedman, *Molecular Quantum Mechanics*, 4th Edition, Oxford University Press, 2005.
- 12. J.P. Lowe, *Quantum Chemistry*, 2nd Edition, Academic Press Inc., 1993.
- 13. HoriaMetiu, Physical Chemistry Quantum Mechanics, Taylor & Francis, 2006.
- 14. A.K. Chandra, Introduction to Quantum Chemistry, 4th Edition, Tata McGraw-Hill, 1994.
- **15.** L. Pauling and E.B. Wilson, *Introduction to Quantum Mechanics*, McGraw-Hill, 2006 (A good source book for many derivations).

Programme	B.Sc. (honours) Chemi	istry				
Course Name	Coordination and Org	ganometall	ic Chemis	try-2		
Type of Course	DCC					
Course Code	M24CH8DCC400					
Course Level	400-499					
Course Summary	This course offers a comprehensive exploration of advanced topics in inorganic chemistry, covering magnetic properties, substitution mechanisms, organometallic catalysis, asymmetric versions, practical gravimetric analysis, and the Separation and identification of cation mixture.					
Semester	8	4	Credits		4	Total Hours
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	
	AND AND	3.03	60			75
Pre-requisites, if any	Coordination And Orga	nometallic	Chemistry	20		

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Analyze and explain the magnetic properties of coordination complexes	An	1,2
2	Evaluate the kinetics and mechanism of ligand substitution reactions in coordination complexes	Е	1,2
3	Analyze the applications of organometallic compounds in organic synthesis and catalysis	An	1,2
4	Explain the properties and utility of polyferrocenylsilanes	U	1,2
5	Apply gravimetric analysis techniques accurately in estimating metal ions, including nickel (II), copper, iron, and aluminum.	А	1,4
6	Apply qualitative analysis techniques to distinguish and confirm the presence of specific cations, showcasing a comprehensive understanding of cation separation.	А	1,4
*Remen Interest	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate I, C t (I) and Appreciation (Ap)	Sreate (C), Skill	(S),

COURSE CONTENT

Module	τ	Units	Course description	Hrs	CO No.
1. Magnetic Properties of Coordination complexes 1.2		1.1	Magnetic properties of complexes - paramagnetic and diamagnetic complexes, molar susceptibility, Gouy method for the determination of magnetic moment of complexes spin only magnetic moment.	, 5	1
		1.2	Anomalous magnetic moments, quenching of magnetic moment. Temperature dependence of magnetism- Curie's law, Curie-Weiss law. Temperature Independen Paramagnetism (TIP), Antiferromagnetism-inter and intra molecular interaction. Structural elucidation of complexes (Co and Ni complexes) using electronic spectra and magnetic moments	10	1
2.Ligand substitution mechanisms in coordination complexes		2.1	Kinetics and mechanism of octahedral substitution- water exchange, dissociative, associative and interchange mechanisms, acid hydrolysis, base hydrolysis, SN ₁ cB mechanism.		2
		2.2	Electron transfer reactions: Outer sphere mechanism – Marcus' theory, inner sphere mechanism- Taube mechanism, mixed outer and inner sphere reactions, two electron transfer and intramolecular electron transfer.	6	2
		2.3	Δ and Λ isomers, Linkage isomerism: Electronic and steric factors affecting linkage isomerism	3	2
3 Organometallic homogeneous catalysis & asymmetric vorsions		3.1	Organometallic reagents in organic synthesis – Petasis, Schwartz reagents for organic transformations. Reppe reaction, Dötz reaction	4	3
	3.2	Hy iso co	vdrogenation reactions- H2 hydrogenation and opropanol transfer hydrogenations catalyzed by Ru(II) mplexes, ionic hydrogenation, hydrosilylation	3	3
3.		As (S Fe hy tra lig ep	symmetric catalysis- Chiral phosphine ligands tructure only) - P-chiral ligands, BINAP, DIOP, rrocene based ligands - Josiphos, Asymmetric drogenation, Noyori hydrogenations, Shvo catalyst, insfer hydrogenation of ketones and imines, metal- gand bifunctional catalysis-cooperative effect, oxidation (Sharpless & Jacobsen).	5	3

	3.4	Preparation of L-DOPA drug, Matalachlor herbicide	1	3
	3.5	Organometallic polymers: Synthesis, properties and applications of polyferrocenylsilanes.	2	4
4.Inorganic Practical -4		 Part-1 Gravimetric Analysis: i. Estimation of nickel (II) using Dimethylglyoxime (DMG). ii. Estimation of copper as CuSCN iii. Estimation of iron as Fe2O3 by precipitating iron as Fe(OH)3. iv. Estimation of Al(III) by precipitating with oxine and weighing as Al(oxine)3 (aluminium oxinate). 	15	5
		Part-2 Separation and identification of a mixture of four cations (a mixture of two familiar ions such as Ag ⁺ , Hg2+, Pb2+, Cu2+, Bi2+, Cd2+, As3+, Sn2+, Sb3+, Fe2+, Fe3+, Al3+, Cr3+, Zn2+, Mn2+, Co2+, Ni2+, Ca2+, Sr2+, Ba2+, Mg2+, Li+, Na+, K+ and NH4 ⁺ and two less familiar metal ions such as Tl, W, Se, Mo, Ce, Th, Ti, Zr, V, U and Li). Minimum four mixtures to be given.	15	6
5		Teachers Specific Course (To be evaluated Internally)		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture, Practical, Discussion
--------------------------------------	---

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
-	marks

Practical Total = 35 marks; Duration- 2 hrs
Record 10 marks, Examination 25 marks

References

1. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Harper Collins College Publishers, 1993.

2. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann,

Advanced Inorganic Chemistry, 6th edition, Wiley-Interscience, 1999.

3. K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.

4. P. Powell, Principles of Organometallic Chemistry, 2ndEdn., Chapman and Hall, 1988.

5. B.E. Douglas, D.H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rdEdn., Wiley-India, 2007.

6. Sumit Bhaduri, Doble Mukesh, Homogeneous Catalysis: Mechanism and Industrial Applications, Wiley Interscience, 2000.

7. B.D. Guptha, A.J Elias, Basic Organometallic Chemistry, Universities Press, 2010.

8. Astruc, D.; Organometallic Chemistry and Catalysis, Springer Verlag, 2007.

9. Robert H. Crabtree, The Organometallic Chemistry of the

Transition Metals, 4thEdn., Wiley Interscience, 2005.

10. J. G. de Vries, C. J. Elsevier, Handbook of Homogeneous Hydrogenations, 3 Volumes, Wiley-VCH, 2006.

11. Catherine E. Housecroft, Alan G. Sharpe C. E. Barnes, Inorganic

Chemistry 4th Ed.. Journal of Chemical Education, 2003.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B.Sc. (honours) Chemistry
Course Name	Instrumental Methods of Chemical Analysis
Type of Course	DCC

Course Code	M24CH8DCC401							
Course Level	400-499							
Course Summary	Chromatography is a technique used to separate and analyze complex mixtures by passing them through a stationary phase, allowing components to move at different rates. Thermal analysis involves methods to study materials' properties as they change with temperature, including differential scanning calorimetry and thermogravimetric analysis. Surface analysis techniques like X-ray photoelectron spectroscopy and atomic force microscopy examine surface properties and compositions of materials at a microscopic level.							
Semester	8 Credits 4 Total Hours							
Course Details	Learning Approach	Lecture Tutorial Practical Others 3 1 75						
Pre-requisites, if any								

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Describe the basic principles and instrumentation of various chromatographic techniques.	U	1,3,4
2	Evaluate the efficiency and effectiveness of different chromatographic methods.	Е	1,4
3	Describe basic principles, instrumentation, limitations and applications of various techniques for surface analysis, such as scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron	U	1,2,3,4
	spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS).		
4	Explain the basic principles, instrumentation and applications of various thermal analytical techniques.	U	1,2,4
*Reme Interes	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E t (I) and Appreciation (Ap)), Create (C), S	Skill (S),

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.

	1.1	Adsorption and partition column chromatography- Methodology, advantages, limitations and applications.	3	1,2
1 Introductio	1.2	Thin-layer chromatography- Introduction, Principle, Methodology, Rf values, advantages, limitations, and applications.	4	1,2
n to chromatogr aphy	1.3	Paper chromatography- Introduction, methodology, development techniques, advantages, limitations, and applications	4	1,2
	1.4	Electrophoresis– Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications	4	1,2
2. GC, HPLC and on exchange chromatogr aphy	2.1	Gas chromatography - Introduction, theory, instrumentation, derivatization, temperature programming, advantages, limitations and applications, Hyphenated GC Techniques (GC- MS, GC-IR, GC-GC, or 2D GC).	6	1,2
	2.2	High-performance liquid chromatography (HPLC)-Introduction, theory, instrumentation, advantages and applications, Hyphenated Techniques in HPLC.	5	1,2
	2.3	Ion exchange chromatography- Introduction, classification, ion exchange resins, properties, mechanism of the ion exchange process, factors	4	1,2
	(affecting ion exchange, methodology and applications		
3.Surface and Thermal Analysis	3.1	X-Ray Photoelectron Spectroscopy- Instrumentation and Sample Introduction, Applications.	2	3
, , , , , , , , , , , , , , , , , , , 	3.2	Auger Electron Spectroscopy- Instrumentation, Applications.	2	3
	3.3	Secondary Ion Mass Spectrometry- Instrumentation, Applications, ToF-SIMS	2	3
	3.4	SEM- basic principles, Instrumentation, Applications.	2	3
	3.5	AFM- basic principles, Instrumentation, Applications	2	3
	3.6	Thermogravimetry- TGA Instrumentation, Analytical Applications of Thermogravimetry, Differential Thermal Analysis- DTA Instrumentation, Analytical Applications of DTA, Differential Scanning Calorimetry- DSC Instrumentation, Applications of DSC.	5	4

4.Practicals	General methods of separation and purification of					
	compounds such as:					
	 Solvent extraction Soxhlet extraction Fractional crystallization TLC and Paper Chromatography 					
	5. Column Chromatography					
	Drawing the structures of organic molecules and					
	reaction schemes by ChemDraw, Symyx Draw					
	and Chemsketch. Draw the structures and					
	generate the IR and NMR spectra of the substrates					
	and products in the following reactions:					
	1. Cycloaddition of diene and dienophile (Diels-					
	Alder reaction)					
	2. Oxidation of primary alcohol to aldehyde and					
	then to acid					
	3. Benzoin condensation					
	4. Esterification of simple carboxylic acids					
	5. Aldol condensation					
5						
5	Teachers Specific Content					
	(10 be evaluated Internally)					
	Lecture Sessions Interactive Sessions including discussions and					
	Lecture Sessions, interactive Sessions including discussions and					
Teaching and	demonstrations, to engage students actively and visual aids like presentations					
Learning	and videos to enhance understanding. Utilize case studies from various scientific					
Annroach						
rippiouen	fields (like environmental science, pharmaceuticals, forensics) to illustrate					
	how different techniques are					
	applied practically.					

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of $6 \ge 20$ marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
*	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks

Mar Athanasius College (Autonomous), Kothamangalam

FYUGP SYLLABUS

- 1. J W. Robinson, E M. Skelly Frame, G M. Frame II, Undergraduate Instrumental Analysis, 7th Edition, 2014, Taylor & Francis.
- 2. M D Graef, M E. McHenry, Introduction to TEM, SEM, and AEM: The Practical Approach to Materials Characterization, 1st Edition, CRC Press, 2018.
- 3. J W. Robinson, E M S Frame, and G M. Frame II, Instrumental Analytical Chemistry, CRC Press, 2021.
- 4. F A Settle, Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall, 1997.
- 5. D A. Skoog, F. J Holler, S R. Crouch, Principles of Instrumental Analysis, 7th Edn., Brooks/Cole, 2020.
- 6. D A. Skoog, D M. West, F. J Holler, S R. Crouch, Fundamentals of Analytical Chemistry, 9th Edn., Brooks/Cole, 2014.
- 7. P. J. Haines, Principles of Thermal Analysis and Calorimetry, The Royal Society of Chemistry, 2002.
- 8. E Lundanes, Chromatography: Basic Principles, Sample Preparations and Related Methods, Wiley-VCH, 2013.
- 9. R Stafford, Chromatography: Principles and Instrumentations, Nyresearch Press, 2020.

Programme	B.Sc. (honours)	B.Sc. (honours) Chemistry							
Course Name	Computational C	Computational Chemistry and Molecular Modelling							
Type of Course	DCE	DCE							
Course Code	M24CH8DCE400								
Course Level	400-499	400-499							
Course	This course deals wa	This course deals with various aspects of computational chemistry and its							
Summary	applications. It also					ious neius.			
						Total Hours			
Semester	8		Credits		4	Total Hours			
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others				
		3		1		75			
Pre-requisites, if any	W/ SHAN	L	6						

CO No.	Expected Course Outcome	Learning Domains *	PSO No				
1	Demonstrate the need for the approximations the Hamiltonian.	U	1,2				
2	Classify the different types of basis sets	U	1,2				
3	Compare and contrast the different methods of computational chemistry.	An	1,2,3				
4	Utilize GAMESS software to solve molecular systems	А	1,2,4				
5	Utilize Autodock software to predict protein-ligand interactions	А	1,2,3,4				
*Rem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT Content for Classroom transaction (Units)

ModuleUnitsCourse descriptionHrsCO N

1Multi-electron atoms. Hartree method, Spin multiplicity,Hartree Fock Method & Post Hartree Fock Methods1.1Multi-electron atoms. Hartree method, Spin multiplicity, Slater determinant, properties of Slater determinant, Hartree-Fock (HF) equations. Secular determinant, restricted and unrestricted HF models.				1
	1.2	The Fock matrix, Roothan Hall equations, Elements of Fock Matrix (elementary ideas only), Steps for HF calculation, Koopmann theorem.	4	1
	1.3	The need for post HF methods. Electron correlation, post HF methods: Configuration interaction and Møller Plesset perturbation theory (elementary ideas only)	2	1
	1.4	Roothan's concept of basis functions, Basis functions, Slater type orbitals (STO), Gaussian type orbitals (GTO), sketches of STO and GTO. Differences between STOs and GTOs	2	2
	1.5	Classification of basis sets – minimal basis sets; Pople basis sets (with polarization and diffuse functions), Correlation consistent basis sets; double zeta, triple zeta and quadrupole zeta basis sets, split valence basis set, Hartree Fock limit	3	2
2 Computational methods	2.1	Semiempirical methods: Introduction, Neglect differential overlap method (NDO), Complete neglect of differential overlap (CNDO), Modified neglect differential overlap (MNDO); Austin Model 1, Parametric Method 3 (PM3), Zero Differential Overlap (ZDO) (All concepts only). Comparison of semiempirical methods. Software used for semiempirical calculations.	3	3

	2.2	Ab Initio method: Introduction, computation of correlation energy, computation of Slater determinant of excited states, Möller-Plesset Perturbation and coupled cluster method.	3	3
	2.3	Density Functional Theory: Introduction, Electron density, development of DFT, The functional, Hohenberg and Kohn Theorem, Kohn and Sham Method, Density Functionals – Exchange and Correlation functionals with examples, DFT methods, applications of DFT, performance of DFT, advantages of DFT in biological chemistry.	5	3
	2.4	Molecular Mechanics (MM): Introduction, Basic theory- bond stretching, angle bending, torsional strain, non bonded interactions. Force fields – MM2, MM3, MM4, AMBER, CHARMM, Merck Molecular Force Field, Consistent Force Field, Parameterization.	3	3
	2.5	Comparison between Semiempirical, Ab Initio, DFT and MM methods – merits and demerits.	1	3
3. Computational Software	3.1	Introduction to GAMESS. Setting up the input file with run type - geometry optimization, frequency calculation and single point energy calculations. \$ groups, format for input file. Hands on training in using the software.	5	4
	3.2	Input for molecule – Cartesian coordinates and Z- matrix. Z matrix- Rules, z-matrix for linear molecules like diatomic molecules, acetylene, hydrogen cyanide and polyatomic molecules like water, ammonia, boron hydride, methane,	4	4
	3.3	Introduction to docking (basic ideas only), protein ligand interactions; Setting up the protein and ligand using Babel and Pymol; Predicting ADMET of the molecule using PreADMET application; docking procedures using Autodock software and result analysis with visualization of interactions using Discovery studio. Hands on training in using the software.	6	5
4.Practicals		Experiments illustrating the capabilities of modern open source/free computational chemistry packages in computing single point energy, geometry optimization, vibrational frequencies, population analysis, conformational studies, IR and Raman spectra, transition state search, molecular orbitals, dipole moments etc. Geometry input using Z-matrix for simple systems.	30	
		obtaining Cartesian coordinates from structure drawing programs like Chemsketch.		
5.		Teachers Specific Content (To be evaluated Internally)		

	Classroom Procedure (Mode of transaction)
Teaching	Lecture (Chalk & Board, powerpoint presentation, flipped
and	classroom) Group Discussion – Thought problems; mind mapping
Learning	Peer interaction
Approach	Demonstration using simulations / models

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of $6 \ge 5 = 20$ marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks
	·

- K. I. Ramachandran, G. Deepa, K. Namboori, Computational Chemistry and Molecular Modeling Principles and Applications, Springer, 2008
- P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics, 4thEdn., Oxford University Press, 2005.
- 3. <u>Attila Szabo, Neil S. Ostlund</u>, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Books on Chemistry
- 4. A. Leach, Molecular Modelling: Principles and Applications, 2nd Edn., Longman, 2001.
- 5. E.G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd Edn., Springer, 2011.
- 6. J.H. Jensen, Molecular Modeling Basics, CRC Press, 2010.
- 7. F. Jensen, Introduction to computational chemistry, 2nd Edn., John Wiley & Sons, 2007.
- C.J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2nd Edn., John Wiley & Sons, 2004.
- 9. Mark Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford university Press, 2010.

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B.Sc. (honours) Chemistry
Course Name	Crystallography and Electrochemistry

Type of Course	DCE					
Course Code	M24CH8DCE401					
Course Level	400-499					
Course	This course provides a	comprehens	sive understa	anding of the	crystallogra	phic
Summary	techniques and electroc	les and electrochemistry.				
Semester	8	Credits			4	Total Hours
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	
		3	0	1		75
Pre-requisites, if any				7		

CO No.	Expected Course Outcome	Learning Domains *	PSO No
1	Understand the basic concept of crystal systems like unit cell, lattice and deduce the crystal structure of NaCl and KCl from XRD patterns.	U, An	1,2
2	Distinguish different diffraction methods and correlate the structure factor with the peak intensity.	U, A	1,2
3	Understand the structure of ionic solution and interpret the laws governing ionic conductivity and the features of concentration cells and fuel cells.	U, An	1,3
4	Explain the causes of corrosion and prevention methods. Understand electrode polarisation and related aspects.	A, An	1,2,4
5	Learn the basic principles of voltammetry and Understand the theory behind electroanalytic techniques and apply it for quantitative and qualitative analysis	U, A, An	1,2,4
*Remen Interest	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E (I) and Appreciation (Ap)), Create (C), S	kill (S),

COURSE CONTENT

Modul eUnitsCourse descriptionHrs	CO No.
-----------------------------------	-----------

	1.1	Symmetry in crystals: Symmetry elements – proper rotation (order of axis – 1, 2, 3, 4 and 6 – derivation), mirror plane, rotary inversion axis. 32 crystallographic point groups (derivation not expected), Hermann- Mauguin notation and corresponding schoenflies notations, translational symmetry elements - glide planes and screw axes, fourteen Bravais lattices, space groups	5	1
1.Crystallo		monoclinic systems.		
graphy	1.2	Miller indices, inter-planar spacing and method of determining lattice types, reciprocal lattices. X-ray diffractometer: Single crystal and powder pattern methods (experimental part). Analysis of powder diffraction patterns of NaCl and KCl. Debye-Scherrer equation.	6	1
	1.3	Crystal growth techniques. Structure factor: Atomic scattering factor, coordinate expression for structure factor.	4	2
2. Advanced Electroche mistry	2.1	Debye-Huckel theory, derivation of Debye-Huckel- Onsager equation, validity of DHO equation for aqueous and non-aqueous solutions, Debye-Huckel limiting law (no derivation) qualitative and quantitative tests of Debye- Huckel limiting law, deviations from DHLL	10	3
	2.2	Concentration cells – with and without transference, liquid junction potential, electrode double layer, electrode- electrolyte interface, different models of double layer,	10	3

		theory of multilayer capacity, electro capillary, Lippmann equation, membrane potential.		
		Fuel cells- Theory and working of fuel cells- methanol fuel cell, H2-O2 fuel cell and solid oxide fuel cells.		
	2.3	Corrosion and methods of prevention, Pourbaix diagram and Evans diagrams. Electrode polarization: - Overvoltage: hydrogen and oxygen overvoltage, theories of overvoltage, Tafel equation and its significance.	10	4
	3.1	Electroanalytical techniques: Classification – Interfacial methods and bulk methods; Idea of static and dynamic methods.	1	5
3.Electro analytical techniques	3.2	Polarography- decomposition potential, residual current, migration current, supporting electrolyte, diffusion current, polarogram, half wave potential, limiting current density, polarograph, explanation of polarographic waves. The dropping mercury electrode, advantages and limitations of DME, quantitative analysis- pilot ion procedure, standard addition methods, qualitative analysis - determination of half wave potential of an ion, advantages of polarography.	8	5
	3.3	Cyclic voltammetry – basic principles and fundamentals; cyclic voltammogram for a reversible and irreversible redox process, Scan rate, Amperometric titrations: General principles of amperometry, instrumentation, application of amperometry in the qualitative analysis of anions and cations in solution, merits and demerits of amperometric titrations.	6	5
4.Practicals		 Construction of phase diagram of three component system with one pair of partially miscible liquids. Kinetics of simple reactions eg. Acid hydrolysis of methyl/ethyl acetate. Kinetics of reaction between K2S2O8 and KI. Data analysis of kinetic experiments using spreadsheet program (determination of rate constant) Polarimetry: Kinetics of the inversion of sucrose in presence of HCl. 		
		 b. Determination of the concentration of a sugar solution 6.Refractometry: a. Identification of pure organic liquids and oils b. Determination of molar refractions of pure liquids c. Determination of concentration of solutions (KCl- Water, Glycerol—water) d. Determination of molar refraction of solids 		
		mercuric iodide system		

	5.	Teachers Specific Content (To be evaluated Internally)		
--	----	--	--	--

	Classroom Procedure (Mode of transaction)				
	• Lecture Sessions, (Chalk & Board, Power point presentation)				
Teaching and	• Interactive Sessions and simulations,				
Learning	• Visual aids like videos and models to enhance understanding.				
Approach	• Peer discussions.				
TT	Laboratory experiments and hands-on training				

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory $Total = 25$ marks	Part A (Short answer) -10 out of $12 \times 1 = 10$ marks
Quiz, Test Papers, seminar	Part B (Short essay) -4 out of $6 \ge 5 = 20$ marks
Practical Total = 15 marks	Part C (Long essay) -2 out of $4 \times 10 = 20$ marks
Lab performance, record, field report etc.	Practical Total = 35 marks; Duration- 2 hrs
INS	Record 10 marks, Examination 25 marks

References

- 1. R P W Atkins, "Physical Chemistry", Oxford University Press (12th Edition)
- 2. N B Hannay, "Solid State Chemistry", Prentice Hall.
- A. McQuarrie, J. D. Simon, "Physical Chemistry A molecular Approach", Viva Books Pvt. Ltd.
- 4. Anthony R. West, "Solid State Chemistry and its Applications", Wiley Eastern.
- Olja Simoska, Shelley D. Minteer, "Techniques in Electroanalytical Chemistry", American Chemical Society, (2022)
- 6. Glasstone S, An Introduction to Electrochemistry, East-West Press (Pvt.) Ltd. (2006).
- 7. Gurdeep Raj, Advanced Physical Chemistry, Goel publishing house.
- R J Silby and R A Alberty, M G Bawendi "Physical Chemistry", (4th Edition) John Wiley & Sons
- 9. F Daniels and R A Alberty, "Physical Chemistry", 3rd ed. John Wiley and Sons, Inc., New
- 10. Electrochemical methods: Fundamentals and Applications, Second Edition, Allen J Bard and Larry R Faulkner.

Suggested Readings

- 1. G. K. Vemulapalli, Physical Chemistry, Prentice-Hall of India Pvt. Ltd.
- 2. Glasstone and Lewis, Elements of Physical Chemistry, Macmillan
- 3. I.N. Levine, Physical Chemistry, Tata McGraw Hill
- 4. Barrow G.M., Physical Chemistry, Tata McGraw-Hill (2007).

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B.Sc. (honours) Chemistry					
Course Name	Advanced Org	ganic Chemis	try			
Type of Course	DCE	DCE				
Course Code	M24CH8DCE402					
Course Level	400-499	400-499				
Course Summary	This course deal applications.	ls with advanc	ed organic c	hemistry reac	tions and va	arious
Semester	8		Credits		4	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
	MAN	3	190 190	1		15
Pre-requisites, if any		~	s/h			

CO No.	Expected Course Outcome	Learning Domains *	PSO No)
1	Understand the concept of protecting groups in organic synthesis	U, A	1,2	
3	Create the skills to plan how to prepare organic molecules.	C, An	1,3	
4	Create a range of key reactions for application in organic synthesis.	C, An	1,2,4	
5	Evaluate different chemical reagents and reactions used in organic synthesis.	U, E, An	1,2,4	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1.Protecting group chemistry	1.1	Protection and deprotection of hydroxy, carboxyl, carbonyl, and amino groups. Chemo and regio selective protection and deprotection.	5	1
	1.2	Protection and deprotection in peptide synthesis: common protecting groups used in peptide synthesis, protecting groups used in solution phase and solid phase peptide synthesis (SPPS).	6	1
	1.3	Role of trimethyl silyl group in organic synthesis.	4	1
2. Retrosynth	2.1	Basic principles and terminology of retrosynthesis: synthesis of aromatic compounds, one group and two group C-X disconnections; one group C-C and two group C-C disconnections.	6	2
etic Analysis	2.2	Amine and alkene synthesis: important strategies of retrosynthesis, functional group transposition, important functional group interconversions. Retrosynthesis of luciferin. Umpolung equivalent - Peterson olefination, Ireland-Claisen rearrangement.	9	2

	Baylis-Hillman reaction, Henry reaction, Nef reaction,	10	2
	^{3.1} Kulinkovich reaction, Ritter reaction, Sakurai reaction,	10	3
	Tishchenko reaction, Noyori reaction, Brook		
	rearrangement. Tebbe olefination. Metal mediated C-C and		
	C-X coupling reactions: Heck, Stille, Suzuki, Negishi,		
	Sonogashira, Nozaki-Hiyama, Buchwald- Hartwig,		
	Ullmann reactions. Kumuda coupling, Wohl-Ziegler		
3.Modern	reaction. Reagents such as NBS, DDQ, DCC, Gilmann		
synthetic	reagent.		
methods and	Introduction to multicomponent reactions- Three		
reagents	3.2 component reactions (Mannich reaction, Passerini		
	reaction, Biginelli reaction), Four component reactions	5	4
	(Ugi reaction). Click reactions (Triazole synthesis).	-	-
4.Practicals	Preparation of compounds by two stages.		
- in ructiculy			
	1) Acetanilide - p-nitroacetanilide - p-nitroaniline	30	
	2) Methyl benzoate - m-nitromethylbenzoate - m-		
	nitrobenzoic acid		
	3) Acetanilide - p-bromoacetanilide - p-bromoaniline		
	4) Benzophenone – benzophenone oxime - benzanilide		
	5) Aniline - 2,4,6-tribromoaniline - 1,3,5-		
	tribromoaniline		
	Preparation Involving Green Alternatives of Chemical		
	Methods		
	1) Acetanilide from aniline		
	2) Ortho-methyl acetanilide from ortho-toluidine		
	3) 1,1-Bis-2-Naphthol from 2-Naphthol		
5.	Teachers Specific Content		
	(To be evaluated Internally)		

	Classroom Procedure (Mode of transaction)
	 Lecture Sessions, (Chalk & Board, Power point presentation)
Teaching and	 Interactive Sessions and simulations,
Learning	 Visual aids like videos and models to enhance understanding.
Approach	• Peer discussions.
II ····	 Laboratory experiments and hands-on training

A. Continuous Comprehensive Assessment	B. End Semester Examination
(CCA)	Theory Total = 50 marks, Duration 1.5 hrs
Theory Total = 25 marks	Part A (Short answer) -10 out of $12 \times 1 = 10$
Quiz, Test Papers, seminar	marks
Practical Total = 15 marks	Part B (Short essay) -4 out of 6 x 5 = 20 marks
Lab performance, record, field report etc.	Part C (Long essay) -2 out of $4 \ge 10 = 20$
	marks
	Practical Total = 35 marks; Duration- 2 hrs
	Record 10 marks, Examination 25 marks
- 1. M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.
- 2. F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007.
- 3. S. Warren, P. Wyatt, Organic Synthesis: The Disconnection Approach, 2nd Edn., Wiley, 2008.
- 4. V.K. Ahluwalia, Oxidation in Organic Synthesis, CRC Press, 2012.
- 5. I. Ojima, Catalytic Asymmetric Synthesis, 3rd Edn., John Wiley & Sons, 2010.
- 6. W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University Press, 2004.
- 7. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, OxfordUniversity Press, 2004.
- 8. R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, 1994.
- 9. L. Kuerti, B. Czako, Strategic Applications of Named Reactions in OrganicSynthesis, Elsevier Academic Press, 2005.
- 10. R.O.C. Norman, J.M. Coxon, Principles of Organic Synthesis, 3rd Edn., Chapmannand Hall, 1993.
- 11. E. J. Corey, Xue-Min Cheng, The Logic of Chemical Synthesis, Wiley, 1995.
- 12. J. Zhu, Q. Wang, M. Wang (Eds), Multicomponent Reactions in Organic Synthesis, Wiley VCH, 2015.
- 13. P.S. Kalsi, Organic Synthesis Through Disconnection Approach, IInd revised Edition.

