PREFACE

In the midst of a transformative era for higher education in our country, the UG Mathematics Board of Studies has embarked on a crucial mission to reshape the undergraduate program's curriculum and syllabus. The primary aim of this restructuring is to achieve academic excellence by nurturing research capabilities among students. Equally important is our goal to seamlessly integrate two vital, interconnected aspects of higher education: employability and skill development.

The programme is structured with Major and Minor courses (DSC, DCC, DCE, DSE etc), Multi-Disciplinary Courses (MDC), Skill Enhancement Courses (SEC), Value Added Courses (VAC), Internship and Research Projects.

Mar Athanasius College (Autonomous), Kothamangalam offers a cutting-edge BSc (Honours) Programme in Mathematics with a specialization in Data Science. Tailored to meet the demands of the digital age, this program provides students with an in-depth grasp of advanced computer programming essential for data analysis. Centered around advanced Python programming, the curriculum delves into intricate models and methodologies crucial for deciphering complex real-world data sets. This specialized training equips graduates with the skills needed to navigate and thrive in the evolving landscape of data-driven industries.

The BSc (Honours) Programme in Mathematics with a specialization in Data Science at Mar Athanasius College (Autonomous), Kothamangalam stands out for its array of distinctive features tailored to nurture well-rounded and adaptable professionals. Firstly, it offers students the flexibility to switch between discipleines of study, allowing them to explore diverse academic interests and tailor their educational journey. This flexibility extends to the opportunity for learners to select courses across all disciplines, promoting a holistic learning experience that aligns with individual passions and career aspirations. Moreover, it hones critical thinking and problem-solving skills through real-life applications, equipping graduates to tackle complex challenges with confidence. Lastly, it places a strong emphasis on research skills, effective communication, community-based engagement, environmental awareness, and fostering a sense of responsibility and accountability, ensuring graduates are well-prepared to make meaningful contributions to society. I would like to express my sincere gratitude to all the members of the Board of Studies, especially, Dr. B. Kannan Professor (Rt), Department of Computer Application, CUSAT, Dr. Arun K. R. Associate Professor, Department of Mathematics, Indian Institute of Science Education and Research(IISER), Thiruvananthapuram, Dr. Jayaprasad P. N. Professor, Department of Mathematics, Rajiv Gandhi Institute of Technology, Govt. Engineering College, Kottayam. Also I would like to thank Dr. Jeeva Jose, Associate Professor, B. P. C College, Piravom who helped us to design the specialization courses. I also thank Dr. Majid. N. V, Assistant Professor in Mathematics, M. A College, Kothamangalam for coordinating and editing the Under Graduate syllabus in Mathematics.

BOARD OF STUDIES IN MATHEMATICS						
NAME	DESIGNATION					
NAME	DESIGNATION					

	CHAIRMAN
Dr. Latha S. Nair	Associate Professor and Head, Dept. of Mathematics, Mar Athanasius College
	EXPERTS (2)
Dr. B. Kannan	Professor, Dept. of Computer Application, CUSAT.
Dr. Arun K. R.	Associate Professor, Dept, of Mathematics, Indian Institute of Science Education and Research(IISER), Thiruvananthapuram.
ONE EXPERT TO B	E NOMINATED BY THE VICE CHANCELLOR (MGU)
Dr. Jayaprasad P. N.	Professor, Dept, of Mathematics, Rajiv Gandhi Institute of Technology, Govt. Engineering College, Kottayam.
MEMI	BER TEACHERS IN THE DEPARTMENT
Dr. Rajesh K. Thumbakara	Associate Professor,
Dr. Bino Sebastian V.	Assistant Professor
Dr. Susan Ray Joseph	Assistant Professor
Dr. Mary Elizabeth Antony	Assistant Professor
Dr. Majid N. V.	Assistant Professor
	MEMBER FROM INDUSTRY
Sri. C. J. George	Managing Director, BNP Paribas, Geojith
	MERITORIOUS ALUMNUS
Mathew Thomas	Assistant Professor, Dept, of Mathematics, St. thomas College (Autonomous), Thrissur

Programme Outcomes (PO)

PO 1: Critical thinking and Analytical reasoning

Capability to analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories to develop knowledge and understanding; critical sensibility to lived experiences, with self awareness and reflexivity of both self and society.

PO 2: Scientific reasoning and Problem solving

Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations.

PO 3: Multidisciplinary/interdisciplinary/transdisciplinary Approach

Acquire interdisciplinary /multidisciplinary/transdisciplinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative-multidisciplinary /interdisciplinary/transdisciplinary- approach for formulate constructive arguments and rational analysis for achieving common goals and objectives.

PO 4: Communication Skills

Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.

PO 5: Leadership and Entrepreneurship Skills

Ability to work effectively and lead respectfully with diverse teams; setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way. After inculcating all the necessary graduate qualities, a graduate can become an entrepreneur.

PO 6: Social Consciousness and Responsibility

Ability to contemplate of the impact of research findings on conventional practices, and a clear understanding of responsibility towards societal needs and reaching the targets for attaining inclusive and sustainable development.

PO 7: Equity, Inclusiveness and Sustainability

Appreciate equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity, secularism and national integration to enable to act as dignified citizens; able to understand and appreciate diversity (caste, ethnicity, gender and marginalization), managing diversity and use of an inclusive approach to the extent possible.

PO 8: Moral and Ethical Reasoning

Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behavior.

PO 9: Networking and Collaboration

Acquire skills to be able to collaborate and network with educational institutions, research organisations and industrial units in India and abroad.

PO 10: Lifelong Learning

Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Programme Specific Outcomes

PSO No.	Upon completion of B.Sc. Mathematics programme, the students:	PO No.
PSO-1	Apply Mathematics as a flexible problem-solving instrument that extends across Science and Technology, Commerce and Management, Humanities, and Soft-computing.	1, 2, 3, 9, 10
PSO-2	Pursue advanced studies within the field to contribute to both academic progress and societal development.	3, 5, 6
PSO-3	Innovate by developing novel techniques and methods, grounded in mathematical principles, to address unresolved challenges in various disciplines.	1, 3, 7
PSO-4	Construct mathematical models that simulate real-life problems, facilitatingpredictions, estimations, and regression analysis.	2, 6, 8
PSO-5	Demonstrate effective communication of mathematical concepts through written, computational, and graphical means.	4, 5, 9
PSO-6	Recognize the diverse applications of mathematics across different disciplines and real-world scenarios, thereby enhancing career opportunities various fields and research.	5, 7, 10

MAR ATHANASIUS COLLEGE (AUTONOMOUS) B. Sc. Mathematics (Honours) Programme Syllabus Index

Name of the Major Subject: Mathematics (Specialization in Data Science)

Semester 1

Course Code	Title of the Course	Type of the Course	Credit	Hours/ Week	dis	Hour distributio week		on/
					L	Т	Р	0
M24MT1DSC100	Foundation of Mathematics	DSC	4	5	3	-	2	-
M24MT1MDC100	Applicable Mathematics I	MDC	3	4	2	-	2	-

L – Lecture, T – Tutorial, P – Practical/Practicum, O – Others

Semester 2

-

Course Code	Title of the Course	Type of the Course	Credit	Hours/ Week	Hour distribution/ week				
	A A A A A A A A A A A A A A A A A A A	G			L	Т	P	0	
M24MT2DSC101	Basic Mathematical Techniques	DSC	4	5	3	-	2	-	
M24MT2MDC101	Applicable Mathematics II	MDC	3	4	2	-	2	-	

L – Lecture, T – Tutorial, P – Practical/Practicum, O – Others

Course Code	Title of the Course		Type of the Course	Credit	Hours/ Week	Hour distribut week		our outio eek	on/
						L	Т	Р	0
M24MT3DSC200	Analytic Geor Theory of Equation Multiple Integrals	netry, s and	DSC A	4	5	3	-	2	-
M24MT3DSC201	Lattices and Vector Calculus		DSC A	4	4	4	-	-	-
M24MT3DSE200	Art of Problem Solving with Python (S)								
M24MT3DSE201	An Invitation to Actuarial Mathematics	Any One	DSE	4	5	3	-	2	-
M24MT3DSE202	Game Theory and Project								

	Management							
M24MT3DSC202	Essential Mathematics for Scientific Study	DSC B	4	5	3	-	2	-
M24MT3DSC203	Mathematics for Business and Economics	DSC B	4	5	3	-	2	-
M24MT3MDC200	Mathematics of Nature and Art	MDC	3	3	3	-	-	-
M24MT3VAC200	Mastering Problem Solving through Vedic Mathematics	VAC	3	3	3	-	-	-

 $L-Lecture,\,T-Tutorial,\,P-Practical/Practicum,\,O-Others,\,S-\,Specialisation$

Semester 4

Course Code	Title of the Course		Type of the Course	Credit	Hours/ Week	di	Ha strib we	our outic eek	on/	
			121	1.77	k	L	Τ	P	0	
M24MT4DSC200	Matrix Algebra and Number Theory		DSC A	4	5	3	-	2	-	
M24MT4DSC201	Fundamentals of Ana	alysis	DSC A	4	4	4	-	-	-	
M24MT4DSE200	Data Processing and Visualization (S)	MANG	POWE							
M24MT4DSE201	Mathematical Modelling	Any One	Any One	DSE	4	5	3	-	2	-
M24MT4DSE202	Transforms and Fourier Series			at much						
M24MT4DSC202	Essential Mathematic Science	es for	DSC B	4	5	3	-	2	-	
M24MT4DSC203	Computational Methods for Business and Economics		DSC B	4	5	3	-	2	-	
M24MT4VAC200	Business Mathematics		VAC	3	3	3	-	-	-	
M24MT4SEC200	Document Preparation using LaTeX		SEC	3	3	3	-	-	-	
M24MT4INT200	Internship			2	-	-	-	-	-	

L-Lecture, T-Tutorial, P-Practical/Practicum, O-Others, S-Specialisation

Course Code	Title of the Course	Type of the Course	Credit	Hours/ Week	dis	Ho strib we	our outio ek	on/
					L	Т	P	0

M24MT5DSC300	A First Course in Complex Analysis		DSC A	4	5	3	-	2	-						
M24MT5DSC301	Limits and Converger	nce	DSC A	4	4	4	-	-	-						
M24MT5DSE302	Fundamentals of Groups and Rings		DSC A	4	4	4	-	-	-						
M24MT5DSC303	Differential Equation Applications	s and	DSC A	4	4	4	-	-	-						
M24MT5DSE300	Data Analysis Using Python (S)	Any One													
M24MT5DSE301	Mathematical MusingsBeyond Classroom		Any One	Any One	Any One	DSE	Λ	5	3		2				
M24MT5DSE302	An Invitation to FuzzyMathematics					One	One	One	One	One	One	DSE	+	5	5
M24MT5DSE303	Exploring the Harmonyof Automata			1											
M24MT5SEC300	Operation Research	1	SEC	3	3	3	-	-	-						

L – Lecture, T – Tutorial, P – Practical/Practicum, O – Others, S- Specialisation

Semester 6

Course Code	Title of the Course		Type of the Course	Credit	Hours/ Week	di	Ho istrib we	our outio ek	n/	
			1.	-5/1		L	Т	Р	0	
M24MT6DSC300	Mathematical Analysis		DSC A	4	4	4	-	-	-	
M24MT6DSC301	Fundamentals of Linear Algebra		DSC A	4	5	3	-	2	-	
M24MT6DSC302	Application of Calculus and Linear Algebra in Finance		DSC A	4	5	3	-	2	-	
M24MT6DSE300	Introduction Machine Learning Using Python (S)									
M24MT6DSE301	Investment Science	Any One								
M24MT6DSE302	Combinatorics		DSE	4	5	3	-	2	-	
M24MT6DSE303	Fundamentals of Fluid Dynamics									
M24MT6DSE304	Computations and Graphics Using Scilab									
M24MT6SEC300	Numerical Methods		SEC	3	3	3	-	-	-	
M24MT6VAC300	Mathematical Computation and Visualization with R	on	VAC	3	3	3	-	-	-	

L – Lecture, T – Tutorial, P – Practical/Practicum, O – Others, S- Specialisation

Course Code	Title of the Course	Type of the Course	Credit	Hours/ Week	di	Hour distribution/ week		on/
					L	Т	Р	0
M24MT7DCC400	Advanced Linear Algebra	DCC	4	5	3	-	2	-
M24MT7DCC401	Theory of Complex Functions	DCC	4	4	4	-	-	-
M24MT7DCC402	Introduction to Metric Spaces	DCC	4	4	4	-	-	-
M24MT7DCE400	Advanced Theory of Groups and Rings	DCE	4	4	4	-	-	-
M24MT7DCE401	Real Analysis	DCE	4	4	4	-	-	-
M24MT7DCE402	Graph Theory	DCE	4	4	4	-	-	-

L – Lecture, T – Tutorial, P – Practical/Practicum, O –Others

Semester 8

Course Code	Title of the Course	Type of the Course	Credit	Hours/ Week	di	Ha strib we	our outio eek	n/
		13	n		L	Τ	Р	0
M24MT8DCC400	Functional Analysis	DCC	4	5	3	-	2	-
M24MT8DCC401	Measure Theory and Integration	DCC	4	5	3	-	2	-
M24MT8DCE400	Basic Topology	DCE	4	5	3	-	2	-
M24MT8DCE401	Field Theory	DCE	4	5	3	-	2	-
M24MT8DCE402	Optimization Techniques	DCE	4	5	3	-	2	-
M24MT8PRJ400	Project (UG Honours with Research)		12	Honours with Research - 2 DCC + Project				
M24MT8PRJ401	Project (UG Honours)		8	Honours – 2 DCC + 1 DSC/DCE + Project OR 2 DCE			1	

L-Lecture, T-Tutorial, P-Practical/Practicum, O-Others

Scheme of instructional Credit and Hours

SI. No.	Semester	Course Type	Course Name		Hours/ week	Hours/ Semester
1	1	DSC A	Foundations of Mathematics	4	5	90
2	2	DSC A	Basic Mathematical Techniques	4	5	90
3	3	DSC A	Analytic Geometry, Theory of Equations and multiple Integrals	4	5	90
4	3	DSC A	Lattices and Vector Calculus	4	4	72
5	4	DSC A	Matrix Algebra and Number Theory	4	5	90
6	4	DSC A	Fundamentals of Analysis	4	4	72
7	5	DSC A	A First Course in Complex Analysis	4	5	90
8	5	DSC A	Limits and Convergence	4	4	72
9	5	DSC A	Fundamentals of Groups and Rings	4	5	90
10	5	DSC A	Differential Equations and Applications	4	4	72
11	6	DSC A	Mathematical Analysis	4	4	72
12	6	DSC A	Fundamentals of Linear Algebra	4	5	90
13	6	DSC A	Applications of Calculus and Linear Algebra in Finance	4	5	90
14	7	DCC	Advanced Linear Algebra	4	5	90
15	7	DCC	Theory Of Complex Functions	4	4	72
16	7	DCC	Basic Topology	4	4	72
17	7	DCC	Advanced Theory of Groups and Rings	4	4	72
18	7	DCC	Real Analysis	4	4	72

1 9	7	DCC	Graph Theory	4	4	72
2 0	8	DCC	Functional Analysis	4	5	90
2 1	8	DCC	Measure Theory and Integration	4	5	90
2 2	8	DCC	Advanced Topology	4	5	90
2 3	8	DCC	Field Theory	4	5	90
2 4	8	DCC	Optimization Techniques	4	5	90
25	3	DSC B	Essential Mathematics for Scientific Study	4	5	90
2 6	3	DSC B	Mathematics for Business and Economics	4	5	90
2 7	3	DSC B	Essential Mathematics for Science	4	5	90
2 8	3	DSC B	Computational Methods for Business and Economics	4	5	90
2 9	3	DSC Elective	Art of Problem Solving with Python (S)	4	5	90
3 0	3	DSC Elective	An Invitation to Actuarial Mathematics	4	5	90
3 1	3	DSC Elective	Game Theory and Project Management	4	5	90
3 2	4	DSC Elective	Data Processing and Visualization (S)	4	5	90
3 3	4	DSC Elective	Mathematical Modelling	4	5	90
3 4	4	DSC Elective	Transforms and Fourier Series	4	5	90
3 5	5	DSC Elective	Data Processing and Visualization (S)	4	5	90
3 6	5	DSC Elective	Mathematical Musings Beyond Classroom	4	5	90
3 7	5	DSC Elective	An Invitation to Fuzzy Mathematics	4	5	90

3 8	5	DSC Elective	Exploring the Harmony of Automata	4	5	90
3 9	6	DSC Elective	Introduction Machine Learning Using Python (S)	4	5	90
4 0	6	DSC Elective	Investment Science	4	5	90
4 1	6	DSC Elective	Combinatorics	4	5	90
4 2	6	DSC Elective	Fundamentals of Fluid Dynamics	4	5	90
4 3	6	DSC Elective	Computations and Graphics Using Scilab	4	5	90
4 4	1	MDC	Applicable Mathematics I	3	4	72
4 5	2	MDC	Applicable Mathematics II	3	4	72
4 6	3	MDC	Mathematics of Nature and Art	3	3	54
4 7	3	VAC	Mastering Problem Solving throughVedic Mathematics	3	3	54
4 8	4	VAC	Business Mathematics	3	3	54
4 9	6	VAC	Mathematical Computation and Visualization with R	3	3	54
5 0	4	SEC	Document Preparation using LaTeX	3	3	54
5 1	5	SEC	Operation Research	3	3	54
5 2	6	SEC	Numerical Methods	3	3	54

Semester 1

.....

CourseCode	Title of the Course	of the rse DSC, MDC,		Hours/		Hour Distribution /week			
	Course Are	SEC etc.	E A	Week	L	Т	Р	0	
M24MT1DSC100	Foundation of Mathematics	Discipline Specific Component- DSC A	4	5	3	0	2	0	
M24MT1MDC100	Applicable Mathematics I	Foundation Component MDC	3	4	2	0	2	0	

Discipline Specific Component (DSCA) Foundations of Mathematics

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B Sc Mathematics
Course Name	Foundations of Mathematics
Type of Course	Discipline Specific Component (DSC A)
Course Code	M24MT1DSC100
Course Level	100
Course Summar y	This course provides a solid foundation in both mathematical logic and the principles of calculus. Beginning with "Basic Logic", students explore propositional logic, propositional equivalence, predicates, and quantifiers. The course then transitions to "Functions", covering the basics of functions and their graphs, combining functions through shifting and scaling, and introducing inverse functions. The core of the course is dedicated to "Derivatives", where students are introduced to techniques of differentiation without formal proof, higher derivatives, product and quotient rules, derivatives of trigonometric functions using formulas, the chain rule, and implicit differentiation. The focus is on practical applications, preparing students for real-world problem-solving. The course concludes with an exploration of the "Applications of Derivatives", emphasizing the analysis of functions. Topics include determining intervals of increase, decrease, and concavity, identifying relative extrema with geometric implications of multiplicity, applying L'Hôpital's Rule, and addressing indeterminate forms.

Semester	1	Credits				4
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/Wee k
	h	3	0	2	0	5
Pre- requisites, If any	Sets, Set operati	ions and I	Limits		<u>.</u>	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Understand the language of Mathematics and communicate in a proper way.	U	1,2,3,4
2	Understand the geometry of basic functions and theirproperties.	U	1,2,3
3	Understand and apply the process of differentiation.	А	1,2,3,6
4	Apply L'Hôpital's rule to evaluate indeterminate forms.	A	1,2
5	Experience graphing tools in doing and enjoying Mathematics	S	1,2,3,4,5,6
*Reme	ember (K), Understand (U), Apply (A), Analyse (An Create (C), Skill (S), Interest (I) and	n), Evaluate Appreciatio	e (E), on (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
1		Basic Logic		
	1.1	Propositional Logic	1	15
	1.2	Propositional Equivalence	1	15
	1.3	Predicates and Quantifiers	1	
		Problems (Practicum)	1	
	Text 2	: Chapter 1- Sections: 1.1, 1.3, 1.4	l	1

2		Functions		
	2.1	Set, Set operations, Set identities (Review)	1	
	2.2	Functions and their graphs (excludingrepresenting functions numerically)	2	20
	2.3	Combining Functions: Shifting and scalingGraphs	2	
	2.4	Inverse Functions	2	
		Problems (Practicum)	1,2	
	Text (Inve	3: Chapter 1 - Sections: 1.1, 1.2, Chapter 7 - Sectinsefunctions only)	ion: 7.1	
3		Derivatives		
	3.1	Introduction to Techniques of Differentiation(without proof)	1, 3, 5	
	3.2	Higher derivatives, The product and quotientrules	1, 3	20
	3.3	Derivatives of trigonometric functions (Using formulas only)	1, 3	20
	3.4	Chain Rule	1, 3	
	3.5	Implicit Differentiation	1, 3	
		Problems (Practicum)	1, 3,5	
	Text	1: Chapter 2 - Sections: 2.3 to 2.7		
4		Applications of derivatives		
	4.1	Analysis of Functions I: Increase, decrease and concavity	1, 3, 5	
	4.2	Analysis of Functions II: Relative extrema	1, 3, 5	20
	4.3	L'Hôpital's Rule	1, 4	_
	4.4	Indeterminate forms	1, 4	
		Problems (Practicum)	1,3, 4, 5	
	Text multi	1: Chapter 3 - Sections: 3.1, 3.2 (Geometric implied plicity, Analysis of polynomials excluded), Chapte	cations of er 6 - Section	:6.5

Practic um

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop ProblemSolving Skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwrittencopy of the solutions should be kept in the department.

Number of questions to beanswered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOKS:

- Anton, Howard, Irl Bivens, Stephen Davis. *Calculus*. 10th ed. John Wiley &Sons, Inc., 2012.
- Rosen, Kenneth H. Discrete Mathematics and Its Applications (7th ed.). McGrawHill Publishing Co. New Delhi, 2013.
- 3. Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 12th ed. Pearson, 2009.

SUGGESTED READINGS:

- Hofstadter, Douglas R. Gödel, Escher, Bach: An Eternal Golden Braid. Expandeded. Basic Books, 2007.
- 2. Copi, Irving M., Carl Cohen. Introduction to Logic. 5th ed. Routledge, 2018.
- 3. Stewart, James. *Calculus: Early Transcendentals*. 10th ed. Cengage Learning, 2023.
- 4. Thompson, Silvanus P. *Calculus Made Easy*. 5th ed. Dover Publications, 2014.
- 5. Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 15th ed. Pearson,2023.

ADVANCED READINGS:

- 1. Hurley, Patrick J. *A Concise Introduction to Logic*. 11th ed. WadsworthPublishing, 2018.
- Copi, Irving M., Carl Cohen. Symbolic Logic. 13th ed. W.W. Norton & Company, 2019.
- 3. Davis, Philip J. Advanced Calculus. 7th ed. Wiley-Interscience, 2002.
- 4. Tu, Loring W. Introduction to Manifolds. 3rd ed. Springer, 2012.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

Determine the output of a combinatorial circuit constructed using basic logic gates. Also Build a digital circuit produces the required output. (Eg: Build a digital circuit that produces the output $(p \lor \neg r) \land (\neg p \lor (q \lor \neg r))$ with input bits p, q and .

- Determine whether a given function is injective or surjective using horizontal line test.
- Using a graphing calculator, visualize the effect of stretching and scaling (horizontal&vertical) of functions.
- Using a graphing calculator, plot the inverse of graphs and understand the geometric relationship between a graph and its inverse.
- Match the graphs of functions with the graphs of their derivatives. (Eg: Question 23 of section 2.2 in text 3).
- Use a graphing utility to make rough estimates of the locations of all horizontal tangent lines(Eg: Question 49 & 50 of section 2.3 in text 3).
- > Use a graphing utility to make rough estimates of the intervals on which fr(x) > 0 (Eg:Questions 63 & 64 of section 2.3 in text 3).
- Use the implicit plotting capability of a CAS to graph a curve. (Eg: Question 45 of section
 2.7 in text 3), Suggested software: Desmos, GeoGebra etc.

Foundation Component - MDC Applicable Mathematics I

Г

1

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS							
Programme	B Sc Mathematics							
Course Name		Applicable Mathematics I						
Type of Course	Foundation Component - MDC							
Course Code		AHANAS	M24MT	IMDC100				
Course Level	MA		1	00				
Course Summar y	This compet topics like r mathematica HCF, LCM, solving, pr competitive examination	itive exam number sy I measured fractions, roviding s.	n-focused p stems, log ments. Thi ratio, perc comprehen	mathematics ical reasoni s course exp centage, and nsive prep	course c ng, data lores con time-rela aration	overs crucial analysis, and cepts such as ted problem- for various		
Semester	1	Credits				3		
Course Details	Learning Approac h	Lectur e 2	Tutoria 1 0	Practicu m 2	Other s	Total Hours/wee k 4		
Pre- requisites, If any	Nil	1	<u> </u>	<u> </u>		1		

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:		
	Upon the successful completion of the course, thestudent will be able to				
1	Develop a solid understanding of various types of numbers. Master techniques for calculating HCF and LCM and gain proficiency in simplifications, squares and square roots.	K, U, E	1,2,3		
2	Acquire logical reasoning skills by exploring concepts such as ratio, proportion, percentage, and solving problems related to profit, loss and age and apply these principles to real world scenarios.	K, U, E	1,2,3,4		
3	Learn the essentials of data analysis, including concepts of simple interest, compound interest and solving calendar problems. Develop analytical skills to interpret and utilize data effectively.	K, U, A	1,2,3		
4	Gain expertise in mathematical measurements through topics like time and work, time and distance, and stocks and shares. Apply mathematical concepts to solve practical problems in these areas.	K, A, E	1,2,3		
*Reme	in these areas. *Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
1		Number System and Numerical Techniques		
	1.1	Type of Numbers	1	
	1.2	HCF and LCM of Numbers	1	18
	1.3	Decimal Fractions, Simplification	1	
	1.4	Square Roots and Cube Roots	1	
		Problems (Practicum)	1	
	Text 1:	Relevant Portions		
2	1	Logical Reasoning & Data Analysis		
	2.1	Ratio and Proportion	2	24
	2.2	Percentage	2	
	2.3	Profit and Loss	2	
	2.4	Problems on Ages	2	
	2.5	Simple Interest & Compound Interest	3	
	2.6	Calendar	3	
		Problems (Practicum)	2, 3	
	Text 1:	Relevant Portions		
3		Mathematical Measurements		
	3.1	Time and Work	4	
	3.2	Time and Distance	4	18
	3.3	Stocks and Shares	4	
		Problems (Practicum)	4	
	Text 1:	Relevant Portions		

	Teacher Specific Contents
4	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)
	This content will be evaluated internally

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning Approach		Classroo Lea MODE	m Procedur transaction cture and Tu OF ASSES	e (Mode o a) torial SSMENT	f			
		Continuous	Compreher	nsive Asses	ssment (CCA)		
	А	Com	ponents		Mark Distributio	on		
		Teacher Sp	ecific Conter	nt	20 Ma	arks		
		Assi	gnment		5 Ma	rks		
		Seme	Semester End Examination (Written)					
			Question	Pattern				
		[Maximum]	rime 90 Mir 50	nutes, Max]	imum Marks			
			Part A	Part B	Part C			
	В	Module	1 Marks	5 Marks	10 Marks	Total		
		Ι	4	2	1	7		
		II	4	2	2	8		

III	4	2	1	7
Total no of questions	12	6	4	22
Number of questions to beanswered	10	4	2	16
Total Marks	10	20	20	50

TEXT BOOK:

1. Aggarwal, R.S. *Quantitative Aptitude*, Sultan Chand and company Ltd, New Delhi, 2017.

SUGGESTED READINGS:

1. Abhijit Guha, Quantitative Aptitude for Competitive

Examinations, McGraw HillEducation 2011.

2. Tyra M., Magical Book on Quicker Maths., BSC Publishing Company, 2018.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Discuss different number systems, such as decimal, binary, octal, and hexadecimal, and their conversions.
- Show how number theory concepts apply in various reallife scenarios, likecryptography or data encoding.
- Provide examples where LCM and HCF are used, such as in simplifying fractions, adding and subtracting fractions, or solving equations.
- Incorporate problems where knowledge of roots is essential, such as in Geometry, Physics, or Engineering.
- Provide examples where ratios and proportions are used in real-life situations, such asin finance, cooking, or map scales.
- Provide examples of profit and loss situations in business, trading, and investmentscenarios.
- Discuss problem-solving strategies for analyzing profit and

loss situations and determining the best course of action.

- Provide examples of interest calculations in banking, investments, loans, and savingsaccounts.
- Show the difference between simple interest and compound interest and how theyaffect the total amount over time.
- Provide examples of time and work problems in production scenarios, team projects, or construction projects.

CourseCode	Title of the Course DSC MDC		Credit	Hours/	Hour Distribution /week			
	MAN	SEC etc.		Week	L	Т	Р	0
M24MT2DSC100	Basic Mathematical Techniques	Discipline Specific Component-DSC A	4	5	3	0	2	0
M24MT2MDC100	Applicable Mathematics II	Foundation Component - MDC	3	4	2	0	2	0

Discipline Specific Component (DSC A)

Basic Mathematical Techniques

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B Sc Mathematics					
Course Name		Basic N	Iathemat i	ical Technic	ques	
Type of Course	D	iscipline	Specific C	omponent (DSC A)	
Course Code	-		M24MT2	DSC100		
Course Level	100					
Course Summary	This course is designed to provide students with a deeper understanding of calculus and linear algebra concepts. The course begins with "Partial Differentiation", covering partial derivatives, the chain rule, and the analysis of extreme values and saddle points. It then progresses into "Integral Calculus," focusing on definite integrals, double integrals, integration methods, and the fundamental theorem of calculus. The course further explores "Matrices", where students delve into linear systems, coefficient matrices, augmented matrices, and matrix operations such as Gauss elimination and back substitution. Elementary row operations, row-equivalent systems, and the various cases of systems in Gauss elimination are covered, leading to the understanding of row echelon form and its implications. The final segment of the course introduces "Graph Theory," covering foundational definitions and examples. Topics include connectedness, adjacency, subgraphs, matrix representations, null graphs, complete graphs, cyclic graphs, path graphs, wheels, regular graphs, bipartite graphs, and the complement of a simple graph					
Semester	2	Credits				4
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practicum 2	cum Others Total Hours/Week	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Understand the concept of partial derivatives and experience its applications	U	1,2,3,6
2	Compute definite integrals of single-variable functions, double integrals and understanding theirgeometric interpretation.	А	1,2,3,4
3	Apply matrices to solve systems of linear equations using methods of Gaussian elimination and matrixinversion.	А	1,2,3,
4	Create an insight into the basics of graph theory	С	1,3,4
*Rem	ember (K), Understand (U), Apply (A), Analyse (A) Create (C),Skill (S), Interest (I) and	n), Evaluate Appreciati	e (E), on (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
1		Partial Differentiation		
	1.1	Partial derivatives	1	
	1.2	The Chain rule	1	20
	1.3	Extreme values and saddle points	1	
		Problems (Practicum)	1	
	Text 3	: Chapter 14 - Sections: 14.3, 14.4, 14.7		I
2		Integral Calculus: Definite integrals anddouble integrals		

	2.1	Integrals and Integration methods (Review)	2	
	2.2	The Definite Integral	2	20
	2.3	The Fundamental Theorem of Calculus (Proof of theorems excluded)	2	
	2.4	Double Integrals over rectangular regions	2	
		Problems (Practicum)	2	
	Text 1 (discon mean exclud - sectio	: Chapter 7 - Section: 7.1; Chapter 4 - Sections ntinuities and integrability excluded), 4.6(dun value theorem for integrals and integrating r led); Chapter on: 14 - 14.1	: 4.5 nmy variab ates of chai	les, The nges
3		Matrices		
	3.1	Linear System, Coefficient Matrix, AugmentedMatrix	3	
	3.2	Gauss Elimination and Back Substitution	3	
	3.3	Elementary Row Operations, Row-Equivalent Systems	3	20
	3.4	Gauss Elimination: The three Cases of systems	3	
	3.5	Row Echelon Form and Information from It	3	
		Problems (Practicum)	3	
	Text 2	: Chapter 7 -Section:7.3		-
4		Graph Theory		
	4.1	Definitions and examples	4	15
	4.2	Connectedness, Adjacency	4	10
	4.3	Subgraphs	4	

	4.4	Matrix Representations	4				
	4.5	Null graphs, Complete graphs, cyclic graphs, path graphs and wheels	4				
	4.6	Regular graphs, Bipartite graphs, Complementof a simple graph	4				
		Problems (Practicum)	4				
	Text 4 graphs	: Chapter 2, Sections: 2(Isomorphism excluded) and three puzzles are excluded)	d), 3 (cubes	, platonic			
5	(This c	Teacher Specific Contents an be either classroom teaching, practical session	, field visit				
J	etc. asspecified by the teacher concerned) This content will be evaluated internally						

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning Approach	Classroom Procedure (Mode of transaction)			
	Lecture, Tutorial and Activity oriented			
	MODE OF ASSESSMENT			

	Α	Continuous Comprehensive Assessment (CCA)				
Assessment Types		Components			Mark Distribution	
- 5 P		Teacher Specific Content			20 Marks	
		Qu	5 Marks			
		Assignment			5 Marks	
	B	S	(Written)			
		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]				
		Module	Part A	Part B	Part C	– Total
			2 Marks	5 Marks	10 Marks	
		Ĩ	3	2	1	6
		II	3	3	1	7
		III	3	2	1	6
		IV	3	2	1	6
		Total no of questions	12	9	4	25
		Number of questions to be answered	10	6	2	18
		Total Marks	20	30	20	70

TEXT BOOKS:

- Anton, Howard, Irl Bivens, Stephen Davis. *Calculus*. 10th ed. John Wiley &Sons, Inc., 2012.
- 2. Kreyszig, Erwin. *Advanced Engineering Mathematics*. 9th ed. Wiley International, 2011.
- 3. Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 12th ed. Pearson, 2009.
- Wilson, Robin J. *Introduction to Graph Theory*. 4th ed. Addison Wesley LongmanLimited, Edinburgh Gate, Harlow, Essex CM20 2JE, England, 1996.

SUGGESTED READINGS:

- Chartrand, Gary, and Ping Zhang. A First Course in Graph Theory. 2nded. Pearson, 2013.
- 2. Spivak, Michael. Calculus and Applications. 11th ed. Pearson, 2023.
- 3. Stewart, James. *Calculus: Early Transcendentals*. 10th ed. Cengage Learning, 2023.
- 4. Thompson, Silvanus P. *Calculus Made Easy*. 5th ed. Dover Publications, 2014.
- 5. Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 15th ed. Pearson,2023.

ADVANCED READINGS:

- 1. Axler, Sheldon. Linear Algebra Done Right. 3rd ed. Springer, 2015.
- 2. Evans, Lawrence C. *Partial Differential Equations: An Introduction*. 2nd ed.American Mathematical Society, 2010.
- 3. Diestel, Reinhard. Graph Theory. 5th ed. Springer, 2017.
- 4. Fichtenholz, Grisha M. Integration of Functions of Several variables. 2nd ed.American Mathematical Society, 2010.
- 5. Strang, Gilbert. *Introduction to Linear Algebra*. 5th ed. Wellesley-CambridgePress, 2016.
- 6. West, Douglas B. Introduction to Graph Theory. 6th ed. Pearson, 2017.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Demonstrate how to visualize tangent planes to surfaces at a specific point using partial derivatives.
- Check how to obtain absolute maximum using partial derivatives.
- Use Microsoft excel or spreadsheet to performs basic matrix operations.
- Find the integrals using integration by parts (Problem Solving).
- Integrate rational functions by partial fractions (Problem Solving).
- Finding areas using definite integrals.
- Find the adjacency matrix of some familiar graphs.
- Find the incidence matrix of some familiar graphs

Foundation Component - MDC Applicable Mathematics II

Г

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B Sc Mathematics					
ourse Name	Applicable Mathematics					
Type of Course	Foundation Component - MDC					
Course Code	M24MT2MDC100					
Course Level	100					
Course Summary	Through this course, students are able to investigate the fundamental principles of quantitative techniques, delving into matrices, their algebraic operations, and specialized types. Navigate the world of polynomials, focusing on quadratic and cubic equations and learning their solutions and factorization. Discover the power of permutations and combinations through factorial notation, with practical applications. Finally, grasp the dynamics of variable rates of change by knowing basic functions and differentiation principles. This course provides students with the necessary mathematical tools for real-world problem-solving and analytical thinking					
Semester	2	Credits 3			3	
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week
Pre- requisites,	rapproach	2	0	2	0	4
11 any	IN11					

CO No:	Expected Course Outcome	Learning Domains	PO No:			
	Upon the successful completion of the course,					
	thestudent will be able to					
1	Understand and apply matrix algebra	U, A	1, 2, 3			
	Apply quadratic and cubic polynomial					
2	techniques, factorization, and solution of	K, U, A	1,2,4			
	quadratic equations					
	to solve problems.	1				
	Utilize factorial notation,	77				
3	permutations, combinations, and	U, A	1, 2, 6			
	their applications to solve					
	combinatorial problems.					
4	Apply differentiation principles, standard rules,					
	and elementary functions to interpret and solve		2, 6			
	problems involving variable rates encountered	K, U, A				
	in Aller and Aller	1/				
	competitive exams.					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),						
	Create (C), Skill (S), Interest (I) an	a Appreciatio	on (Ap)			

COURSE OUTCOMES (CO)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
1		Matrices & Polynomials		
	1.1	Matrices, Different types of matricesassociated with a matrix	1	
	1.2	Some special types of matrices	1	
	1.3	Algebra of matrices	1	24
1.4	Quadratic and cubic polynomials	2		
-----	--	------		
1.5	Solution of quadratic polynomials	2		
1.6	Factorisation of quadratic polynomials	2		
	Problems (Practicum)	1, 2		

Text 1: Chapter 1– Sections: 1.4 to 1.6; Chapter 2 - Sections: 2.3 to 2.7Text 2: Relevant Portions of chapter 10 (Elementary Algebra)

2	Permutation and Combination		
	2.1 Factorial notation	3	
	2.2 Permutations & its applications	3	18
	2.3 Combinations & its applications.	3	
	Problems (Practicum)	3	
	Text 2: Chapter 14 (Permutation & Combination	n)	
3	Differentiation		
	3.1 Introduction to techniques of differentiation	n 4	
	3.2 The product and quotient rules	4	18
	3.3 Derivatives of trigonometric function (using formulas only)	18 4	
	$_{3.4}$ The chain rule	4	
	Problems (Practicum)	4	
	Text 3: Chapter 2 - Sections 2.3 to 2.6 (without theorems)	ut proof of rul	es/
4	Teacher Specific Contents(This can be either classroom teaching, practical setc.as specified by the teacher concerned)	s ression, field vis	it
	This content will be evaluated in	nternally	

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

 $\overline{\mathbf{A}}$ minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning	Classroo	m Procedure (Mode	of transacti	0 n)			
Approach	Lecture an	nd Tutorial					
	1-	MODE OF	ASSESSM	ENT			
	1	Continuous Comprehensive Assessment					
	A	Com	ponents		Mark Distributio n		
		Teacher Sp	ecific Conter	ıt	20 Marks		
Assessment	15	Assignment			5 Marks		
Types		Semes	ster End Exa	mination	(Written)		
			Question Pa	ttern			
		[Maximum]	Fime 90 Min Marks 50	nutes, Max]]	imum		
			Part A	Part B	Part C		
	В	Module	1 Marks	5 Marks	10 Marks		
		Ι	4	2	1		
		II	4	2	2		
		III	4	2	1		
		Total no of questions	12	6	4		
		Number of questions to be	10	4	2		

answered			
Total Marks	10	20	20

TEXT BOOKS:

- 1. Shanti Narayan, Mittal P. K., Text book of Matrices, S. Chand.
- 2. M. Tyra, Magical Book on Quicker Maths., BSC Publishing Company, 2018.
- Howard Anton, Irl Bivens, Stephens Davis. *Calculus*, 10th ed. John Wiley &Sons, Inc., 2012.

SUGGESTED READINGS:

- 1. Aggarwal, R.S. *Quantitative Aptitude*, Sultan Chand and company Ltd, NewDelhi, 2017.
- 2. Thomas, George B., Jr., and Maurice D. Weir, *Thomas' Calculus*, 12th ed. Pearson, 2009.
- 3. Edward, Joseph. Differential Calculus for beginners, Nabu Press, 2011.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Discuss different aspects of matrix algebra, including determinant calculation, matrix equations, and solving systems of linear equations using matrices.
- Discuss higher degree polynomials and various methods of polynomial factorization, such as synthetic division, long division and factoring by grouping.
- Illustrate how polynomial equations are represented graphically and how to interpret behaviour of polynomial functions.
- Include real-life application problems involving permutations and combinations, such as probability, arrangements, and selections.
- Illustrate the applications of derivatives in various fields, such as Physics, Economics, Commerce and Engineering.
- Discuss proofs of differentiation rules or theorems in the sections 2.3, 2.4, 2.5, 2.6 of Text 3

Semester 3

CourseCode	Title of the Course	Type of the Course	Credit	Hours/	Hour Distribution /week			
		SEC etc.		Week	L	Т	Р	0
M24MT3DSC200	Analytic Geometry, Theory of Equations and Multiple Integrals	Discipline Specific Component-DSC A	4	5	3	0	2	0
M24MT3DSC201	Lattices and Vector Calculus	Discipline Specific Component-DSC A	4	4	4	0	0	0
M24MT3DSE200	Art of Problem Solving with Python	Discipline Specific Elective - DSE	4	5	3	0	2	0
M24MT3DSE201	An Invitation to Actuarial Mathematics	Discipline Specific Elective - DSE	4	5	3	0	2	0
M24MT3DSE202	Game Theory and Project Management	Discipline Specific Elective - DSE	4	5	3	0	2	0
M24MT3DSC202	Essential Mathematics for Scientific Study	Discipline Specific Component - DSC B	4	5	3	0	2	0
M24MT3DSC203	Mathematics for Business and Economics	Discipline Specific Component - DSC B	4	5	3	0	2	0
M24MT3MDC200	Mathematics of Natureand Art	Foundation Component - MDC	3	3	3	0	0	0
M24MT3VAC200	Mastering Problem Solving through Vedic Mathematics	Foundation Component - VAC	3	3	3	0	0	0

Discipline Specific Component (DSC A)

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme		I	B Sc Math	ematics		
Course Name	Analytic Geo	ometry, T	heory of I Integral	Equations a s	nd Mul	tiple
Type of Course	Di	scipline S	pecific Co	omponent (l	DSC A)	
Course Code			M24MT31	DSC200		
Course Level	Carlas	ANASIC	200	(A		
Course Summar y	This course prareas in advan Equations, and the parametriz sections, and Equations see between roots characteristics theorems and The course pra- introducing de double integrat focus then sh cylindrical, an double and th problem-solvi This course ai tools and pro- studies in	200 This course provides a comprehensive exploration of three key areas in advanced mathematics: Analytic Geometry, Theory of Equations, and Multivariable Calculus. Students will delve into the parametrization of plane curves, polar coordinates, conic sections, and conics in polar coordinates. The Theory of Equations section covers roots of equations, relationships between roots and coefficients, transformations of equations, characteristics, and positions of roots, as well as essential theorems and Descartes' ruleof signs. The course progresses into the realm of multivariable calculus, introducing double integrals. Students will learn to evaluate double integrals over general regions, compute areas using double integration, and apply double integrals in polar forms. The focus then shifts to triple integrals, exploring rectangular, cylindrical, and spherical coordinates. Substitutions in both double and triple integrals are covered, enhancing students' problem-solving capabilities.				
Semester	3		Credi			4
Course Details	Learnin g Approac	Lectur e	Tutoria 1	Practicu m 2	Other s	Total Hours/wee k
	h	5	0	2		

Analytic Geometry, Theory of Equations and Multiple Integrals

COURSE OUTCOMES (CO)

PSO No:	Learning Domains	Expected Course Outcome	CO No:
		Upon the successful completion of the course, thestudent will be able to	
1,2,3,4,5	А	Demonstrate proficiency in parametrizing planecurves and working with polar coordinates.	1
1,2,3	An	Analyse conic sections and conics in polarcoordinates.	2
1,2,3,4,5	U	Understand the relationship between roots and coefficients in equations.	3
1,2,3,6	А	Utilize double integrals for area computations and problem-solving in polar forms.	4
1,2,3,6	A	Master triple integrals in rectangular, cylindrical, and spherical coordinates.	5
]	A A Evaluate (H	Utilize double integrals for area computations andproblem-solving in polar forms. Master triple integrals in rectangular, cylindrical, and spherical coordinates. mber (K), Understand (U), Apply (A), Analyse (An), C), Skill (S), Interest (I) and Appreciation (Ap)	4 5 *Remem Create (C

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO. No:	Hours	
		Analytic Geometry			
	1.1	Parametrization of Plane curves	1		
	1.2	Polar Coordinates	1		
1	1.3	Conic sections	2	20	
	1.4	Conics in polar coordinates	2		
		Problems (Practicum)	1, 2		
	Text 2: Chapter 11 - Sections: 11.1 (Brachistochrone and Tautochrone excluded), 11.3, 11.6 & 11.7				
2		Theory of Equations			

	2.1	Roots of Equation and Relation connecting theroots and coefficients of equation	3	
	2.2	Transformation of Equations and special cases	3	
	2.3	Character and Position of the roots of anequation	3	15
	2.4	Some general theorems (without proof) andDescartes' rule of signs (without proof)	3	
		Problems (Practicum)	3	
	Text	1: Chapter 6 – Sections: 6.1 to 6.4, 6.7 to 6.10		
3		Double integrals		
	3.1	Double integrals over general regions	4	20
	3.2	Area by double integration	4	
	3.3	Double integrals in Polar Forms	4	
	Text 2	2: Chapter 15 - Sections: 15.2 to 15.4		
4		Triple Integrals		
	4.1	Triple Integrals in Rectangular Coordinates	5	
	4.2	Triple Integrals in Cylindrical and SphericalCoordinates	5	20
	4.3	Substitutions in Double Integrals	4, 5	
	4.4	Substitutions in Triple Integrals	5	

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning		Classroom Procedure (Mode of transaction)					
Approach	2	Lecture, Tutorial and Activity oriented					
		MO	DE OF ASS	ESS <mark>MENT</mark>			
	A	Continu	ous Compre (C	ehensive As CA)	sessment		
		Com	ponents		Mark Distribu	tion	
		Teacher Sj	pecific Conte	ent	20 N	Marks	
Assessment		Quiz ir	any mode		5 N	Iarks	
Types		Assignment			5 Marks		
	В	Seme	ster End Ex	amination	(Written)		
			Question	Pattern			
		[Maximum Time 2 Hours, Maximum Marks 70]					
		Madula	Part A	Part B	Part C	Total	
		Module	2 Marks	5 Marks	10 Marks	Total	
		Ι	3	2	1	6	
		II	3	3	1	7	
		III	3	2	1	6	
		IV	3	2	1	6	
		Total no of questions	12	9	4	25	

Number of questions to beanswered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOKS:

- 1. Bernard, S., J. M. Child. Higher Algebra. AITBS Publishers, India
- Thomas, George B., Jr., Maurice D. Weir. *Thomas' Calculus*, 12th ed. Pearson, 2009.

SUGGESTED READINGS:

- 1. Berling, William P. Journey through Genius: The Great Theorems of Algebra and TheirProofs. Revised ed. Springer, 2016.
- 2. Spivak, Michael. Calculus and Applications. 11th ed. Pearson, 2023.
- 3. Stewart, James. *Calculus: Early Transcendentals*. 10th ed. Cengage Learning, 2023.
- 4. Stewart, James. Multivariable Calculus. 9th ed. Cengage Learning, 2023.
- 5. Thompson, Silvanus P. *Calculus Made Easy*. 5th ed. Dover Publications, 2014.
- Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 15th ed. Pearson,2023.

ADVANCED READINGS:

- 1. Artin, Michael. Algebra: Structures and Applications. 5th ed. Springer, 2011.
- Byron, Frederick W., and Robert W. Fuller. Advanced Analytic Geometry. 2nd ed DoverPublications, 1970.
- 3. Evans, Lawrence C. *Algebraic Number Theory*. 2nd ed. Cambridge UniversityPress, 2019.
- 4. Davis, Philip J. Advanced Calculus. 7th ed. Wiley-Interscience, 2002.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Construct a cycloid artwork by tracing the path of a point on a rolling cycle.
- Solve Cubic equations.
- Solve Bi-quadric equation.
- Use double integrals to calculate surface area of three- dimensional object.
- Visualize 3-D surface using any computer software (GeoGebra, Scilab etc).

Discipline Specific Component (DSC A)

Lattices and Vector Calculus

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS			
Programme	B Sc Mathematics			
Course Name	Lattices and Vector Calculus			
Type of Course	Discipline Specific Component (DSC A)			
Course Code	M24MT3DSC201			
Course Level	200			
Course Summar y	This course serves as an essential bridge to advanced mathematical concepts, focusing on the development of proof techniques, an in- depth exploration of relations, equivalence relations, partial ordering, vector differentiation, and vector integration. Students will gain proficiency in constructing and understanding mathematical proofs, explore the properties of relations, and delve into the derivatives and integrals of vector functions. The course begins with an "Introduction to Proofs," covering terminologies, theorem statements, and both direct and indirect proof methods. Special attention is given to common mistakes in proofs, enhancing students' ability to critically assess mathematical arguments. The second segment delves into "Relations," examining their properties and methods of representation. Equivalence relations and partially ordered sets are explored, including the construction and interpretation of Hasse Diagrams and Lattices.			

Pre- requisites, If any	Vector Algebr	a					
	h	4	0	0	0	4	
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k	
Semester	3	Credits	LEGE			4	
	problem-solv	ving.	S CO	17			
	their stateme	ents and pr	actical	-			
	plane and the	e divergen	ce theore	m are pres	ented, e	mphasizing	
	with the exc	lusion of o	detailed p	roofs. Gree	en's the	orem in the	
	conservative	fields, a	nd potent	ial functio	ons are	introduced,	
	Fundamental theorems such as path independence,						
	work circulation and flux						
	line integral	s vector f	ields and	their ann	lications	in, covering	
		i curve, a	loration	of voctor in	allves.	n covoring	
	functions, are	functions, arc length, unit tangent vectors, curvature, normal					
	wherestuden	where students will study vector functions, derivatives of vector					
	The latter pa	The latter part of the course transitions into vector Calculus,					
	The 1-44-11						

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Develop proficiency in constructing andunderstanding mathematical proofs.	А	1,2,4
2	Analyse and apply properties of relations and represent them effectively.	An	1,2
3	Explore vector functions, derivatives, arc length, and curvature of curves.	А	1,2,3
4	Strengthen critical thinking skills through practical applications of mathematical concepts	S	1,2,3,6

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Relations and Proof Techniques		
	1.1	Terminologies and Understanding How Theorems are Stated	1	
	1.2	Direct Proofs	1,4	
	1.3	Indirect Proofs	1,4	15
	1.4	Mistakes in Proofs	1,4	
	1.5	Relations and their properties	2	
	1.6	Representation of Relations	2,4	
	Text 1	: Chapter 1 - Section: 1.7; Chapter 9 - Sect	ions: 9.1 & 9.	.3
2		Equivalence relations and Partial ordering		
	2.1	Equivalence Relations	2,4	
	2.2	Partially Ordered Set	2	15
	2.3	Hasse Diagrams	2, 4	
	2.4	Lattices	2, 4	
	Text 1	: Chapter 9 - Sections: 9.5 & 9.6		
3		Vector Differentiation		
	3.1	Vector Algebra (Review), Vector functions, Derivatives of vector functions	3	
	3.2	Arc length and unit tangent vector	3	15
	3.3	Curvature and normal vectors of a curve	3	
	3.4	Directional derivatives and Gradient vectors	3	

Content for Classroom transaction (Units)

	Text 2: Chapter 13 - Sections: 13.1, 13.3, 13.4; Chapter 14 - Section: 14.5				
4		Vector integration			
	4.1	Line integrals	3, 4		
	4.2	Vector fields and line integrals: work,circulation and flux	3, 4		
	4.3	Path independence, conservative field and potential function (proofs of theoremsexcluded)	3	15	
	4.4	Green's theorem in plane (statement andproblems only)	3, 4		
	4.5	Curl, Divergence in three dimensions,	3, 4		
	Text 2 (Diver	2: Chapter 16 - Sections: 16.1 to 16.4,16.7(Cu rgence in three dimensions only)	rl only) & 16	.8	
5	Teacher Specific Contents(This can be either classroom teaching, practical session, field visitetc. asspecified by the teacher concerned)This content will be evaluated internally				

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose to encourage creativity and to develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching andLearning	Classroom Procedure (Mode of transaction)

Approach	Lecture, Tutorial and Activity oriented						
	MODE OF ASSESSMENT						
	Α	Continuous Comprehensive Assessment (CCA)					
		Components			Mark Distribution		
		Teache	er Specific C	ontent	20 Ma	arks	
		Qui	z in any mo	ode	5 Ma	rks	
		A	Assignment		5 Ma	rks	
	В	Semester End Examination (Written)					
Assessment	1-	[Maxin	Ques num Time 2	stion Pattern 2 Hours, Maxi 70]	mum Marks		
Types	\sum	Multiphan	Part A	Part B	Part C	T-4-1	
		Module	2 Marks	5 Marks	10 Marks	Total	
		IZI	3	2	1	6	
		II	3	3	1	7	
		III	ANC3	2	1	6	
		IV	3	2	1	6	
		Total no of questions	12	9	4	25	
		Number of questions to be answered	10	6	2	18	
		Total Marks	20	30	20	70	

TEXT BOOKS:

- Rosen, Kenneth H. Discrete Mathematics and Its Applications (7th ed.). McGrawHill Publishing Co. New Delhi, 2013.
- 2. Thomas, George B., Jr., Maurice D. Weir. *Thomas' Calculus*. 12th ed. Pearson, 2009.

SUGGESTED READINGS:

- 1. Griffiths, David J. *Introduction to Electromagnetism*. 4th ed. Cambridge UniversityPress, 2013.
- 2. Joyce, David D., and George C. Parker. Vector Calculus and Its

Applications. 4thed. Jones & Bartlett Publishers, 2022.

- 3. Schroeder, Glenn N. *Vector Analysis for Computer Graphics*. 3rd ed. A K Peters/CRCPress, 2017.
- 4. Tenenbaum, Morris T., and Harry Pollard. *Mathematics for the Nonmathematician:An Intuitive Approach.* 8th ed. Dover Publications, 2013.

ADVANCED READINGS:

- 1. Borceux, Francis. Universal Algebra. 2nd ed. Springer, 2003.
- 2. Farin, Susan E., and Wayne S. Sayle. *Vector Calculus*. 5th ed. Freeman, 2018.
- 3. Hayes, Martin H. C. *Introduction to Mathematical Proofs*. 2nd ed. Oxford UniversityPress, 2021.
- 4. Maddox, Randall. *A Transition to Advanced Mathematics*. 8th ed. AmericanMathematical Society, 2023.
- 5. Velleman, Daniel J. *How to Prove It: A Structured Approach*. 4th ed. Pearson, 2015.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Apply vector integration techniques to model projectile motion.
- Plot vector valued functions using graphing calculators and visualise concepts of gradient and directional derivatives.
- Visualize position, velocity and acceleration of a moving object using sci-lab.
- Compute distance travelled and speed for motion along a space curve.
- Experience other commonly used proof methods like exhaustive prof, proof by cases, existence proof etc.
- Study Stoke's theorem and use it for evaluating circulation of vector functions.
- Discuss oriented surface and non-oriented surface with the help of a Mobius band.

Discipline Specific Elective – DSE

Art of Problem Solving with Python

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B Sc Ma	thematics		
Course Name		Art	of Problem	Solving with	N Python	
Type of Course		Discipline Specific Component (DSC A)				
Course Code		M24MT3DSE200				
Course Level	TW .	200				
Course Summary	Python Prog language wh Science, Mac among them Programming uses Python a	Python Programming Language is a general purpose programming language which has applications in all fields of computer science. Data Science, Machine Learning, Artificial Intelligence are a few domains among them. This course provides the foundation of core Python Programming which can be applied to any field of Computer Science that uses Python as the programming language for solving the problems.				
Semester	3	Credits				4
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week
	Арргоасп	3	0	2	0	5
Pre- requisites,if any	Basic Compute	Basic Computer Knowledge				

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		

1	Understand and apply the variables and operators in Python.	U,A	1,2,3,4			
2	Analyze and apply the required data structures namely numbers, strings, lists, tuple, set, dictionary along with the built-in functions.	A, An	1,4,5			
3	Apply and find the solution for the problems using decision making statements and loops in Python	A	1,5,6			
4	Analyze and apply functions with different types of arguments and modules for problem solving	A, An	1,2,3			
5	Apply all the constructs and create solutions for problems	A, C	1,2			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),						

Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
	1.1	Introduction to Python, Features of Python	1	
	1.2	How to Run Python	1	
1	1.3	Identifiers, Reserved Keywords, Variables,	1	10
	1.4	Input, Output and Import Functions	1	
	1.5 Operators- Arithmetic, Relational, Assignment, Logical, Membership and Identity Operators. Example Programs.		1	
		Problems (Practicum)	1	
	Text 1	: Chapter 1		
	2.1	Data Types – Numbers: Mathematical Functions, Trigonometric Functions, Random Number Functions. Example programs.	2	20
2	2.2	Strings - String slicing, Built-in String formatting functions – len(), lower(), upper(), swapcase(), capitalize(),title(), lstrip(), rstrip(), strip(), replace(), count(), index(), startswith(), endswith(), isdecimal(), isalpha(), isalnum(), isdigit(), islower(), isupper(), isnumeric(), join(), split(). Example Programs.	2	- 20

2.3	Lists: Slicing, Built-in List Functions –len(), max(), min(), list(), map(). Built-in List Methods – append(), count(), remove(), index(), extend(), reverse(), insert(), sort(), pop(), clear(), copy(). Example Programs.	2
2.4	Tuple: Slicing, Built-in Tuple Functions – len(), max(), min(), tuple(). Example Programs	2
2.5	Set: Built-in Set functions – len(), max(), min(), sum(), sorted(), enumerate(), any(), all(). Built-in Set methods – add(), remove(), union(), update(), intersection(), intersection_update(), difference(), difference_update(), isdisjoint(), issubset(), issuperset(). Example Programs.	2
2.6	Dictionary: Properties of dictionary keys, Built-in Dictionary Functions – len(), Built-in Dictionary Methods – clear(), copy(), keys(), values(), items(), update(). Example Programs.	2
2.7	Mutable and Immutable objects, Data type conversion	2
	Problems (Practicum)	2

3	3.1	Decision Making: if statement, ifelse statement, ifelse statement, Nested if statement. Example programs.	3	
	3.2	Loops: for loop, range(), enumerate(), for loop with else, while loop, while loop with else statement. Example programs.	3	
	3.3	Nested Loops, Control Statements: break statement, continue statement, pass statement. Example programs.	3	25
	3.4	Types of Loops - Infinite Loop, Loops with condition at the top, Loops with condition in the middle, Loops with condition at the bottom. Example programs.	3	
	3.5	List, Set and Dictionary Comprehensions. Example programs.	3	
		Problems (Practicum)	3	
	Text 1	: Chapter 3		
4	4.1	Functions- Definition, Function calling, Functions returning more than one value. Example programs	4,5	
	4.2	Function arguments- Required arguments, Keyword arguments, Default arguments, Variable-length arguments. Example	4,5	20
		programs		

	4.3	Anonymous (Lambda) Functions, Higher order functions. Example programs.	4,5					
	4.4	Modules - import Statement: import with renaming, fromimport statement, import all names, creating modules. Example programs	4,5					
		Problems (Practicum)						
	Text 1	1: Chapter 4, Chapter 5	J					
		Teacher Specific Contents						
5		Practical session, Field visit						
		This content will be evaluated internally	,					

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning Approach	Classroom Procedure (Mode of transaction)						
	A	Continuous Comprehensive Asse	essment (CCA)				
		Components	Mark Distribution				
		Teacher Specific Content	20 Marks				
		Quiz in any mode	5 Marks				
		Assignment	5 Marks				
	В	B Semester End Examination (Written)					

	Question Pattern						
			m 11me 2 H	ours, Maxim	um Marks 70]		
Assessment Types		Module	Part A	Part B	Part C	Total	
		Module	2 Marks	5 Marks	10 Marks	Total	
		Ι	3	2	1	6	
		II	3	3	1	7	
		III	3	2	1	6	
		IV	3	2	1	6	
		Total no of questions	12	9	4	25	
	1	Number of questions to be answered	10	6	2	18	
		Total Marks	20	30	20	70	

TEXT BOOK:

1. Jeeva Jose, Taming Python by Programming, Khanna Publishers, New Delhi, 2006.

SUGGESTED READINGS:

- Charles Dierbach, Introduction to Computer Science using Python, Wiley, 2013
- 3. James Payne , Beginning Python: Using Python 2.6 and Python 3, Wiley India, 2010
- 4. Paul Gries , Jennifer Campbell, Jason Montojo, Practical Programming: An Introduction to
- 5. Computer Science Using Python 3, Pragmatic Bookshelf, 2/E 2014
- Adesh Pandey, Programming Languages Principles and Paradigms, Narosa, 2008

WEB RESOURCES:

- https://www.javatpoint.com/python-tutorial
- https://www.geeksforgeeks.org/python-programming-languagetutorial/
- <u>https://www.w3schools.com/python/</u>

• <u>https://www.tutorialspoint.com/python/index.htm</u>

Discipline Specific Elective – DSE

An invitation to Actuarial Mathematics

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme			B.Sc. Mat	hematics			
Course Name		An invitat	ion to Act	uarial Mat	hematics		
Type of Course		Discipline Specific Elective – DSE					
Course Code	-	M24MT3DSE201					
Course Level		200					
Course Summar y	Introduces th mathematics and their sin Stocks, divid with.	Introduces the students to provide basic grounding in basic financial mathematics like simple interest, compound interest, loan calculation and their simple applications. It familiarises the concepts- annuity, Stocks, dividends bonds, securities etc and the calculation associated with					
Semester	3	Credits	E IS POW			4	
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k	
	h	3	0	2	0	5	
Pre- requisites, If any	Probability, N	Money Math	n Fundame	ntals			

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	To Provide Basic Grounding in FinancialMathematics	U	1,2,3,4,5
2	To Calculate various interests rates and budget.	А	1,2,3,4

3	To develop the skills, select suitable insurances according to the circumstances	S	1,2,3,4,6			
4	To handle various types of cash flows and ratefluctuations.	Ι	1,2,3			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
	1.1	Probabilities and Events	1	
1	1.2	Conditional Probabilities	1	
	1.3	Random Variable, Expected values andvariance.	1	15
		Problems (Practicum)	1	
	2.1	Simple Interest, Compound Interest, Continuously compounded interest	2	
	2.2	Present values of future payments, rate of return	2	
2	2.3	Continuously varying interest rates	2	20
	2.4	Annuities, Calculating annuity premiums	2	
	2.5	Amortization of a debt, sinking funds, capitalbudgeting	2	
		Problems (Practicum)	2	
	3.1	Risk and Insurance, Long Term and Short term insurance	3	
3	3.2	Life Insurance ,Automobile insurance,property insurance,	3	20
	3.3	Indemnity principle, co-insurance principle	3	
	3.4	Stocks, dividends and bonds	3	

		Problems (Practicum)	3	
	4.1	Deterministic Cash flows, internal rate of interests, modified internal interest rates, project choice	4	
4	4.2	Fixed income securities(bonds): bond price and yield, duration, convexity	4	20
	4.3	Immunisation against interest rate fluctuations, short and forward rates	4	
	4.4	Term structure of interest rates, incorporatingterm structure into price/duration/convexity/immunization	4	
		Problems (Practicum)	4	

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of

the solutions should be kept in the department.

Teaching andLearning Approach		Classroom Procedure (Mode of transaction)						
	Lectu assig	Lecture, Teaching, Interactive instruction, Seminar, Group assignment, Library work and Group discussion.						
	MODE OF ASSESSMENT							
	A	Continuous Comprehensive Assessment (CCA)						
		Components	Mark Distribution					
		Teacher Specific Content	Teacher Specific Content 20 Marks					

		Quiz ii	5 M	arks			
		Ass	Assignment				
	В	Seme	ester End Ex	amination	(Written)		
		[Maximur	Question n Time 2 Ho	Pattern ours, Maxin	num Marks		
Assessment			7	0]			
Types			Part A	Part B	Part C		
		Module	2 Marks	5 Marks	10 Marks	Total	
		Ι	3	2	1	6	
		II	3	3	1	7	
		III	3	2	1	6	
	1	IV	3	2	1	6	
		Total no of questions	12	9	4	25	
		Number of questions to beanswered	10	6	2	18	
		Total Marks	20	30	20	70	

REFERANCES:

- 1. Sheldon Ross. An Elementary Introduction to Mathematical Finance.3rd Edition, Cambridge Advanced Sciences, 2011
- 2. David Promislow. *Fundamentals of Actuarial Mathematics*. Wiley, 3rd Edition, 2015
- 3. Luenberger. *Investment Science* (Indian Edition), Oxford University Press, 2ndEdition, 2013.

SUGGESTED READINGS:

- 1. Robert Buchanan. An Undergraduate Introduction to Financial Mathematics.
- 2. Lerner and Zima. Business Mathematics (Schaum's Outline Series).
- 3. Brealy and Myers. Corporate Finance, Mc Graw Hill, 2023.
- 4. Sharpe, N.J. and Bailey Upper Saddler. River. *Investment* Prentice Hall, 1999.
- 5. Bodie, Kane and Marcus. Investments, McGraw-Hill Irwin, 2005.
- 6. P Romislow, S. D. Fundamentals of Actuarial Mathematics. John

Wiley & Sons,2014.

7. Bower, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. *ActuarialMathematics*, 1997.

Discipline Specific Elective – DSE

Game Theory and Project Management

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B.Sc. M	athematics		
Course Name		Game Tl	neory and	Project Mai	nagement	t
Type of Course	1-	Discij	oline Speci	ific Elective	– DSE	
Course Code	S	M24MT3DSE202				
Course Level		IM		200		
Course Summary	This course and project comprehensition of solving graths analysis strategically successfully	This course delves into the fundamental principles of game theory and project management, providing the students with a comprehensive understanding of strategic decision making, methods of solving games, techniques of project management and critical paths analysis. This course aims to equip students with the skills to strategically solve complex decision making scenarios and to successfully manage projects their future fields.				
Semester	3	Credits				4
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practicum 2	Others	Total Hours/week 5
Pre- requisites,If any	Basic Algebra	, Calculus	<u> </u>	2		

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		

1	Understand how optimal strategies are formulated inconflict and competitive environment	U	1,2		
2	Apply various methods to select and execute various optimal strategies to win the game	Е	1,2,3,4		
3	Understand the significance of using PERT and CPMtechniques for project management	U	1,2		
4	Determine critical path and floats associated with non- critical activities and events along with total projectcompletion time.	E	1,2,3,4		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

11

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours			
		Game Theory: An Introduction					
	1.1	Game Theory: Introduction, Two-Person Zero-Sum Games	1				
	1.2	Pure Strategies: Games with Saddle Point	1	15			
1	1.3	Mixed Strategies: Games without Saddle Point,Rules of Dominance	1				
		Problems (Practicum)	1				
	Text 1: Chapter 12 – Sections: 12.1 to 12.5						
2		Game Theory: Solution Methods					
	2.1	Solution Methods: Algebraic Method	2				
	2.2	Arithmetic Method	2	20			
	2.3	Matrix Method	2				
	2.4	Graphical Method	2				

	2.5	Linear Programming Method	2						
		Problems (Practicum)	2						
	Text 2	1: Chapter 12 – Sections: 12.6.1 to 12.6.5	I						
		Fundamentals of Project Management							
	3.1	Project Management: Introduction, BasicDifference between PERT and CPM	3	20					
3	3.2	Phases of Project Management	3						
	3.3	PERT/CPM Network Components andPrecedence Relationships	3						
	Text 2	Text 1: Chapter 13 – Sections: 13.1 to 13.4							
		Critical Path Analysis							
	4.1	Critical Path Analysis: Forward Pass Method	4						
4	4.2	Backward Pass Method	4	20					
•	4.3	Float of an Activity and Event	and Event 4						
	4.4	Critical Path	4						
	Text 2	1: Chapter 13 – Sections: 13.5.1 to 13.5.4	1						
5	(This etc. as	Teacher Specific Contents can be either classroom teaching, practical session sspecified by the teacher concerned) This content will be evaluated inter	, field visit						

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching andLearning	Classroom Procedure (Mode of transaction)								
Approach	Lector and C	ure, Teaching, Intera Group discussion.	active instruc	tion, Semi	nar, Assignm	ent,			
		МО	DE OF ASS	ESSMENT	C				
	A	Continuous Comprehensive Assessment (CCA)							
		Con	nponents		Mark Distributi	on			
		Teacher S	pecific Conte	ent	20 M	arks			
		Quiz i	n any mode		5 Ma	arks			
	1	Assignment			5 Marks				
	B Semester End Examination (Written					ritten)			
Assessment Types		[Maximum	Question n Time 2 Ho 70	Pattern urs, Maxir)]	num Marks				
					HAMAN	Part A	Part B	Part C	
			Module	2 Marks	6 Marks	10 Marks	Total		
	1	I	2	1	1	4			
		II	2	3	2	7			
		III	2	3	2	7			
		IV	2	1	1	4			
		Total no of questions	8	8	6	22			
		Number of questions to be answered	5	5	3	13			
		Total Marks	10	30	30	70			

TEXT BOOK:

1. Sharma J.K. Operations Research: Theory and Applications - 6th

edition. TrinityPress an Impint of Laxmi Publications Pvt. 2016.

SUGGESTED READINGS:

- 1. Frederick S. Hillier., Gerald J Lieberman. *Introduction to Operations Research 10thedition*. McGraw Hill Education, 2015.
- 2. Taha, Hamdy A. *Operations Research: An Introduction* 8th *edition*. PearsonEducation, 2007.
- 3. Kanti Swarup., Gupta "P.K., Man Mohan. *Operation Research*. Sultan Chand andSons, 2010.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

• Problem solving using the methods discussed in the module 1, 2 3 and 4

Discipline Specific Component (DSC B)

Essential Mathematics for Scientific Study	
---	--

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme	B Sc C	B Sc Chemistry, B Sc Physics, B Sc Statistics etc.					
Course Name	Esse	ential Ma	thematics	for Scienti	fic Stud	у	
Type of Course	Discipline Specific Component (DSC B)						
Course Code	M24MT3DSC202						
Course Level	MAI		200				
Course Summar y	This Mathematics minor course complements and enhances the undergraduate programmes on science disciplines such as Physics, Chemistry etc., by enabling the students to understand the concepts of complex numbers and analytic functions, to solve differential equations of different types, to identify different conic sections and its applications in possible areas and to determine unit tangent vector, principal normal vector, and curvature of different curves.						
Semester	3	Credits				4	
Course Details	Learning Approac	Lectur e	Tutoria l	Practicu m	Other s	Total Hours/wee k	
Pre- requisites	h Basic awareness	3	0 inate syste	2 ms vectors	0 functio	5	
If any	Basic awareness of coordinate systems, vectors, functions, derivatives, and integrals						

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		

1	Apply C-R equations to check the analyticity of complex functions	А	1,2,3,4			
2	Solve equations in complex variables and differential equations	А	1,2,4,5,6			
3	Identify conic sections from its equations and Visualize curves	Е	1,2,3			
4	Develop applications of mathematical concepts inscientific/real life problems	С	1,2,3,4			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
1		Complex Functions		
	1.1	Complex Numbers, Sums and Products, Basic Algebraic Properties, moduli, conjugates, Exponential and Polar Forms, Products and Powers in Exponential form	1	
	1.2	Functions of Complex Variables, Separation into Real and Imaginary parts, Limits and Continuity	1	20
	1.3	Derivatives, Analytic Function, Cauchy- Riemann Equations, Laplace Equation, HarmonicFunction	2	
		Problems (Practicum)	1, 2	
	Text 1: Cl 22, 24 to 26 Theorems	hapter 1 – Sections: 1 to 7; Chapter 2 – Section – Statements Only	s: 12,15,16	5,18 to
2		Differential Equations		
	2.1	Degree, Order, Solution of Differential Equations, Variable Separable method	2, 4	
	2.2	Exact Differential Equations	2, 4	18
	2.3	Linear Differential Equations, Bernoulli's	2, 4	-

		Equations						
		Problems (Practicum)	2, 4					
	Text 2: Chapter 1 – Sections: 1.1 to 1.5 Theorems – Statements Only							
3		Analytic Geometry						
	3.1	Polar coordinates	3					
	3.2	Conic sections	3	1 7				
	3.3	Conic section in polar coordinates	3					
		Problems (Practicum)	3					
	Text 3: (11.7The	Chapter 11 – sections: 11.3,11.6 & prems – Statements Only						
	10	Vector Calculus						
	4.1	Curves in Space and tangents, Velocity andAcceleration, Arc length in space	4	2				
	4.2	Curvature and Normal vectors of a curve	4	U				
4	4.3	Directional derivatives and gradient vectors	4					
		Problems (Practicum)	4					
	Text 3: (14.5The	Chapter 13 – Sections: 13.1,13.3,13.4; Chapter 1 prems – Statements Only	4 – Section	:				
5	Teacher Specific Contents(This can be either classroom teaching, practical session, field visitetc. asspecified by the teacher concerned)This content will be evaluated internally							

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching		Class	sroom Proce transa	edure (Mode ction)	e of			
andLearning Approach	Direct Instruction, Brainstorming Lecture, Explicit Teaching, Active Co-operative Learning,							
		MODE OF ASSESSMENT						
	А	Continuous Comprehensive Assessment (CCA)						
		Co	omponents		Mark Distribut	ion		
		Teacher	Specific Cor	ntent	20 N	Iarks		
	1	Quiz in any mode			5 Marks			
		Assignment			5 Marks			
	В	B Semester End Examination (Writte						
Assessment Types		[Maxim	Questi um Time 2 I	on Pattern Hours, Maxi 70]	mum Marks	5		
				Madula	Part A	Part B	Part C	Total
			Module	2 Marks	5 Marks	10 Marks	Total	
		I	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
		Total no of questions	12	9	4	25		
		Number of questions to be answered	10	6	2	18		
		Total Marks	20	30	20	70		

TEXT BOOKS:

- 1. James Ward Brown, Ruel V. Churchill. *Complex Variables and Applications, EighthEdition,* McGraw Hill, 2009
- 2. Simmons, G.F., Krantz, S.G. Differential Equations, Tata

McGraw Hill-NewDelhi, 2007.

3. Thomas, George B Jr. *Thomas' Calculus, Twelfth Edition*, Pearson, 2010SUGGESTED

READINGS:

- 1. Grewal, B. S., *Higher Engineering Mathematics*, 44th Edition, Khanna Publishers, 2021.
- 2. Anton, H., Bivens, Devis. Calculus, tenth Edition, Wiley India.
- 3. Kreyszig, E. Advanced Engineering Mathematics, Wiley, India.
- 4. Siddiqi, A.H., Manchanada, P. *A first course in Differential Equations*, Mc Millan.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Proofs of theorems from module 1, 2, 3 & 4
- > Solution of equations in Complex variables, Regions in the Complex plane
- Homogeneous Differential equations, Integrating Factors of Differential Equations
- Visualization of curves and conic section, Obtaining Points of farthest and closestapproach of Planets/ Satellites
- > Integration in vector fields, Finding Work done, Flow, circulation and flux
- > Text 1-Chapter 1 (Roots of complex numbers, Regions in complex plane)
- Text 2 Chapter 1 (Homogeneous Differential Equations, Integrating factors)
- Text 3 Chapter 16 (Line integrals, Work, Circulation and Flux)
Discipline Specific Component (DSC B)

Mathematics for Business and Economics

Г

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme		B	A Econom	ics and B Co	om	
Course Name		Mat	thematics Eco	for Business nomics	and	
Type of Course	1-	Discipli	ine Specifi	c Componen	t (DSC B	6)
Course Code	S	M24MT3DSC203				
Course Level		MA		200		
Course Summary	Mathematical methods and theories applicable in economics and business to analyse real life problems are included in the course. First module provides an understanding of the way in which financial calculations are worked out. Second module deals with different methods of solving systems of equations and the many varied applications of such systems to business and economics. Optimization of functions using their derivatives is included in the third module. Linear programming is helpful in business and economics where it is often necessary to optimize a profit or cost function subject to several inequality constraints. The graphic approach for maximization and minimization linear programming problems is also illustrated. Module four deals with the applications					
Semester	3	Credits				4
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week
	Approach	3	0	2	0	5
Pre- requisites,If any	Graphing fu Multi- varia calculation,E	nctions, I ble funct asics of lo	Basics of ions and ogarithmic	differential partial diffe and exponent	and integerentiation	gral Calculus, n, Percentage ons

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	understand the difference between simple and compound interest	U	1,2,3
2	evaluate a geometric series and calculate the totalinvestment obtained from a regular savings plan.	Е	1,2,3,4,5
3	use net present values to appraise investment projects and calculate the internal rate of return, thepresent value of an annuity	А	1,2,3,4
4	understand functions, classical optimizationtechniques and marginal concepts in economics	U	1,2
5	analyse the real-life problems in business and economics and to model it mathematically	A, An, C	1,2,3
*Reme	mber (K), Understand (U), Apply (A), Analyse (A Create (C),Skill (S), Interest (I) and	n), Evaluato l'Appreciati	e (E), on (Ap)

COURSE OUTCOMES (CO)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Mathematics of Finance		
	1.1	Compound Interest	1	15
	1.2	Geometric Series	2	

	1.3	Investment Appraisal	2, 3	
		Problems (Practicum)	1,2,3	
	Text 2:	Chapter 3 – Sections: 3.2 to 3.4		
2		Mathematical Economics		
	2.1	Introduction to System of Equations	3	
	2.2	Graphical Solutions	3	-
	2.3	Supply-and-Demand Analysis	3, 4	
	2.4	Break-Even Analysis	3, 4	20
	2.5	Elimination and Substitution Methods	3, 5	
	2.6	Income Determination Models	3, 5	
	2.7	IS-LM Analysis	3	
		Problems (Practicum)	3, 4, 5	
	Text 1:	Chapter 4 – Sections: 4.1 to 4.7		
3		Optimization Techniques		
	3.1	Use of Graphs in LPP, Maximization UsingGraphs	4, 5	
	3.2	The Extreme-Point Theorem, MinimizationUsing Graphs	4, 5	_
	3.3	Optimization of Functions, The Successive-Derivative Test	4, 5	25
	3.4	Marginal Concepts in Economics	4, 5	
	3.5	Optimizing Economic Functions for Business	4, 5	
	3.6	Relationship Among Total, Marginal, andAverage Functions	4, 5	-
		Problems (Practicum)	4, 5	
	Text 1: 10.10	Chapter 7 – Sections: 7.1 to 7.4; Chapter 10 – S	Sections: 10).6 to

4		Applications of Mathematics in Economicsand Business					
	4.1	Functions of Several Independent Variables	3, 4				
	4.2	Constrained Optimization problems withLagrange Multipliers	3, 4	15			
	4.2	Applications of definite integral in consumers and producers surplus	3, 4, 5				
		Problems (Practicum)	3, 4, 5				
	Text 1: C	hapter 12 – Section: 12.11; Chapter 13 – Sec	ctions: 13.1 &	k 13.6			
		Teacher Specific Contents					
5	(This can be either classroom teaching, practical session, field visit						
5	etc. asspe	cified by the teacher concerned)					
		This content will be evaluated internally					

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)
Learning Approach	Direct Instruction, Brain Storming Approach, Interactive instruction, GroupDiscussion, Presentation by Individual Student/ Group Representatives
	MODE OF ASSESSMENT
	A Continuous Comprehensive Assessment (CCA)

Assessment		(Mark Distribution				
Types		Teache	er Specific Co	ontent	20 Marks		
		Qui	iz in any mo	de	5 Ma	arks	
		I	Assignment		5 Ma	arks	
	В	S	emester End	l Examination	(Written)		
		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]					
		Module	Part A	Part B	Part C	F 1	
			2 Marks	5 Marks	10 Marks	Total	
		Ι	3	2	1	6	
		I II AN	SIU3	3	1	7	
	5	M III	3	2	1	6	
		IV	3	<u>2</u>	1	6	
		Total no of questions	12	9	4	25	
		Number of questions to be answered	MANGP	6	2	18	
	1	Total Marks	20	30	20	70	

TEXT BOOKS:

- 1. Edward T Dowling, *Mathematical Methods for Business and Economics*, Schaum'sOutline Series, McGraw Hill, 2009.
- 2. Ian Jacques, *Mathematics for Economics and Business*, 5th Edition, Prentice Hall,2006.

SUGGESTED READINGS:

- 1. Taro Yamne, *Mathematics for Economists-An elementary survey*, Prentice -Hall, Inc.
- 2. Robert Brechner, *Contemporary Mathematics for Business and Consumers*, Fifth Edition
- 3. Das, N. G., Das, J K. *Business Mathematics and Statistics*, Tata McGraw-Hill, 2012.
- 4. Martin Anthony, Norman Biggs, *Mathematics for economics and finance Methods andModelling*, Cambridge University Press, 2012.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

Application mathematics in economics and business using spreadsheets

Foundation Component - MDC

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B Sc Ma	thematics		
Course Name		Math	ematics of	f Nature and	l Art	
Type of Course		Foundation Component - MDC				
Course Code	1-	M24MT3MDC200				
Course Level	S Wa	7 -	2	00		
Course Summar y	The course nature, arts, continued fra role in natu principles, an	explores l science, a ctions in v ural phen d practical	Fibonacci nd the sig various co omena, a applicatio	numbers' d gnificance of ntexts. It he rtistic expro- ons across dis	iverse ap the gol lps to un essions, sciplines.	pplications in den ratio and derstand their mathematical
Semester	3	Credits	21			3
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k
	h	3	0	0	0	3
Pre- requisites, If any	Nil					

Mathematics of Nature and Art

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		

	Understand Fibonacci and Lucas numbers,		
1	theirproperties, and applications in natural	U. A	
-	phenomena	0,11	1,2,5,6
	and diverse real-world scenarios.		
_	Analyze and apply Fibonacci's impact on artistic		
2	expressions, scientific realms,	K, U, A	1,2,3,4
	andinterdisciplinary		
	connections across various fields.		
	Comprehend the significance of the golden		
	ratio, its geometric interpretations, applications		
3	in human anatomy, arts and mathematical	K, U,	1,2,3,4,5
	constructions.	А	
	Understand and apply the concepts of finite and		
	infinite continued fractions, convergence,	11	
4	recursive definitions, and their implications in	K, U,	1,4,5,6
	solving problems	A	
	solving protonils.		
*Reme	mber (K), Understand (U), Apply (A), Analyse (A	An), Evaluate	e(E),
	Create (C),Skiu (S), Interest (I) an	a Appreciati	on (Ap)

COURSE CONTENT

Modul e	Unit s	Course Description	CO No:	Hours
1		Fibonacci Numbers in Nature, Arts & Science		
		The rabbit problem, Fibonacci numbers,		
	1.1	Recursive definition, Lucas numbers, Fibonacci	1	
		and Lucas primes.		
	1.2	Different types of Fibonacci and Lucas numbers.	1	
		Fibonacci numbers in nature: Fibonacci and the		
		earth, Fibonacci and flowers, Fibonacci and trees,		16

	1.3	Fibonacci and sunflowers, Fibonacci - pinecones, artichokes and pineapples, Fibonacci and bees, Fibonacci and subsets.	
	1.4	Fibonacci and atoms, Fibonacci and reflections.Fibonacci and araffins and cycloparaffins,Fibonacci and2music, Fibonacci and poetry.2	
	1.5	Fibonacci and compositions with 1's and 2's,Fibonacci and neurophysiology.(Theorems 3.1,3.2,3.3- statement only)	
	Text 1: C	hapters 2 & 3 (Relevant sections only)	
2		Fibonacci Numbers in Arts and Science	
	2.1	The golden ratio, Mean proportional, A geometric interpretation.	3
	2.2	Ruler and compass construction, Euler construction. Generation by Newton's method.	3
	2.3	The golden ratio revisited: Golden ratio and human body, Mexican Pyramids, Differential equations, Golden ratio and centroids of circles.	3
	Text 1: C	hapters 20 & 21 (Relevant sections only)	
3		Continued Fractions	
	3.1	Finite continued fractions, Convergents of a continued fraction.	4
	3.2	Recursive definition, Infinite continued fraction.	4
	3.3	An infinite continued fraction for –, Pell's equation.	4
	Text 1: C	hapter 27	

	Teacher Specific Contents
	(This can be either classroom teaching, practical session, field visit
4	etc. asspecified by the teacher concerned)
	This content will be evaluated internally

Teaching and	Classroom Procedure (Mode of transaction)						
Learning Approach		I	Lecture and T	utorial			
		МО	DE OF ASS	ESSMENT	•		
	A	Continuous	Comprehen	sive Asses	sment (CCA))	
Assessment	1	Com	ponents	1	Mark Distribution		
Types		Teacher Sp	pecific Conter	nt	20 Ma	arks	
		Assign	ment/Quiz		5 Ma	rks	
		Semester End Examination (Written)					
		[Maximum	Question Time 90 Min 50	Pattern utes, Maxi]	mum Marks		
		Module	Part A 1 Marks	Part B 5 Marks	Part C 10 Marks	Total	
	В		4	2	1	7	
		Ш	4	2	2	8	
		III	4	2	1	7	
		Total no of questions	12	6	4	22	
		Number of questions to beanswered	10	4	2	16	
		Total Marks	10	20	20	50	

TEXT BOOK:

 Thomas Koshy. Fibonacci and Lucas numbers with applications, John Wiley & Sons,Inc, 2001.

SUGGESTED READINGS:

- Richard A Dunlap. *The Golden Ratio and Fibonacci Numbers*, World ScientificPublishing Co. Pt. Ltd.
- 2. Mario Livio. The Golden Ratio, Broadway Books, New York.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- ➢ Fibonacci and male bees.
- ➢ Fibonacci and sewage treatment.
- ➢ Fibonacci and the Balmer series.
- Proofs of Theorems 3.1, 3.2 and 3.3.
- Fibonacci and electrical networks.
- Violin and golden triangle.
- Golden ratio by origami.

Gattei's discovery of golden ratio.

Foundation Component - VAC

Mastering 1	Problem	Solving	through	Vedic	Mathematics
-------------	---------	---------	---------	-------	--------------------

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS							
Programme			B Sc Ma	athematics				
Course Name	Maste	ering Prob	olem Solvir	ng through V	edic Ma	thematics		
Type of Course		Fou	ndation C	omponent - `	VAC			
Course Code	M24MT3VAC200							
Course Level		ARA	- 1	200				
Course Summary	This course Mathematics efficiency is approach, s Mathematics applications quick and ac	This course provides a comprehensive exploration of Vedic Mathematics, a traditional Indian system known for its speed and efficiency in problem-solving. Through a structured four-unit approach, students will understand the importance of Vedic Mathematics, advanced arithmetic techniques, root calculations, and applications in algebra, empowering them with valuable tools for quick and accurate problem-solving.						
Semester	3	Credits				3		
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week		
D	Approacn	3	0	0	0	3		
Pre- requisites,If any	Nil							

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, the student will be able to		

1	Attain proficiency in mental calculation techniques for addition, subtraction, multiplication, and division, fostering quicker andmore accurate problem-solving.	S	1,2,3,4,5,6			
2	Apply Vedic Mathematics to solve a diverse range of mathematical problems, including algebraic expressions and equations, showcasing versatility in problem-solving.	А	1,2,3,4			
3	Gain confidence and readiness to tackle competitive exams by mastering quantitative aptitude using Vedic Mathematics techniques, ensuring a competitive edge in various examinations.	A, An	1,2,3			
4	Apply Vedic Mathematics skills to real-world scenarios, including ratio and proportions, percentage calculations, profit and loss analysis, and interest calculations.	A	1,2,3,4			
5	Apply Vedic Mathematics principles to algebraic expressions, including efficient multiplication of polynomials and solving systems of linear equations.	A, An	1,2,3,4,5			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Foundations of Vedic Mathematics		
	1.1	Overview of Vedic Mathematics- History and its importance, Vedic Sutras and sub- sutras	1	12
	1.2	Addition : Ekadhikena Purvena	1, 2	
	1.3	Subtraction :Nikhilam NavatascaramamDasatah, Digit Separator Method	1, 2	

	1.4	Multiplication : Ekanyunena Purvena, Multiplication of numbers having two- digits and three-digits using Urdhva Tiryagbhyam, Multiplication by series of 1's and 9's	1, 2			
	1.5	Division : Urdhva – Tiryakgbhyam	1, 2,5			
	Text 1:	Specified sections from Chapters 1 to 4 &	6			
2		Advanced Arithmetic Techniques and itsApplications				
	2.1	Squares: Squares of numbers up to three- digits using Ekadhikena Purvena, Dwanda yoga	1,2,5			
	2.2	Square roots : Duplex Method	1, 2, 5			
	2.3	Cubes: Cubes of two-digit numbers usingNikhilam	1,2,5	19		
	2.4	Cube roots : Cube Root of a number havingless than 7 digits using Beejank	1, 2, 5			
	2.5	Divisibility and simple Osculators	1,2,5			
	2.6	Applications: Ratio and proportions, Percentage, Profit and Loss, Simple interest, Compound Interest	3, 4, 5			
	Text 1: Specified sections from Chapter 7, 8, 10 & 11 Text 2: Chapter 29 Text 3: Chapter 18, 20, 23, 24 & 25					
		Algebraic Multiplication and Equation Solving				
		EquationSolving				
3	3.1	Multiplication in algebra : Multiplication of polynomials of the form $ax+by$, ax^2+bx+c	1,3	14		
	3.2	Simple Equations: Solving simple equations one variable	1,3			

	3.3	Simultaneous Simple Equations : Solution of system of linear equations in two variables	1,3					
Text 1: Specified sections from Chapter 5 Text 2: Specified sections from Chapters 11, 12, 13 & 15								
4	(This ca	Teacher Specific Contents n be either classroom teaching, practical ses	s sion, field vis	sit				
4	etc. asspecified by the teacher concerned)							
		This content will be evaluated in	nternally					

Teaching	Classroom Procedure (Mode of transaction)						
and Learning Approach	Interac on Mental Provide	tive Lectures, Condu Calculation Technique eHands-on Exercises	ict Regular ues and Vedi with Immedi	Practical C c Mathema ate Feedba	Workshops F tics Applicati ck to Reinforc	ocusing ons, ee	
	Learnin	ng.		241			
		MOD	E OF ASSE	SSMENT			
		Continuous	Comprehen	nsive Ass <mark>e</mark> s	ssment (CCA	.)	
	A	Components			Mark Distribution		
		Teacher Sp	20 Marks				
		Assi	5 Marks				
		Semester End Examination (Written)					
		Question Pattern					
Assessment Types		[Maximum Time 90 Minutes, Maximum Marks 50]					
			Part A	Part B	Part C		
	В	Module	1 Marks	5 Marks	10 Marks	Total	
		Ι	4	2	1	7	
		II	4	2	2	8	
		III	4	2	1	7	
		Total no of questions	12	6	4	22	
		Number of questions to	10	4	2	16	

beanswered				
Total Marks	10	20	20	50

TEXT BOOKS:

- Thakur, Rajesh Kumar. *The Essentials of Vedic Mathematics*, Rupa Publications IndiaPvt Ltd, 2013.
- 2. Bharati Krishna Tirthaji. *Vedic Mathematics: Sixteen Simple Mathematical formulae from Vedas*, Motilal Banarsidass, 1981.
- Tyra, M. Magical Book On Quicker Maths, BSC Publishing Co. Pvt. Ltd, 5th Edition,2018.

SUGGESTED READINGS:

- 1. Singhal, Vandana. Vedic Mathematics for all ages: A Beginner's Guide, Motilal Banarsidass, 2014.
- 2. Patankar, U. S., S. M. Patankar. *Elements of Vedic Mathematics*, TTU Press, 2018.

ADVANCED READING:

1. Dattoli, Giuseppe, Marcello Artioli, Silvia Licciardi. Vedic Mathematics: A Mathematical Tale from the Ancient Veda to Modern Times, World Scientific Publishing Co Pte Ltd, 2021.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

• Relevant topics can be selected from Textbook 3

Semester 4

CourseCode	Title of the Course	Type of the Course	Credit	Hours/	Hour Distribution /week			
CourseCode		DSC, MDC, SEC etc.		Week	L	Т	Р	0
M24MT4DSC200	Matrix Algebra and Number Theory	Discipline Specific Component-DSC A	4	5	3	-	2	-
M24MT4DSC201	Fundamentals of Analysis	Discipline Specific Component- DSC A	4	4	4	-	-	-
M24MT4DSE200	Data Processing and Visualization (S)	Discipline Specific Elective - DSE	4	5	3	•	2	-
M24MT4DSE201	Mathematical Modelling	Discipline Specific Elective - DSE	4	5	3	-	2	-
M24MT4DSE202	Transforms and Fourier Series	Discipline Specific Elective - DSE	4	5	3	-	2	-
M24MT4DSC202	Essential Mathematics for Science	Discipline Specific Component - DSC B	4	5	3	-	2	-
M24MT4DSC203	Computational Methods for Business and Economics	Discipline Specific Component - DSC B	4	5	3	-	2	-
M24MT4VAC200	Business Mathematics	Foundation Component - VAC	3	3	3	-	-	-
M24MT4SEC200	Document Preparationusing LaTeX	Foundation Component - SEC	3	3	3	-	-	-
M24MT4INT200	Internship	-	2	-	-	-	-	-

Discipline Specific Component (DSC A)

Matrix Algebra and Number Theory

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme		B Sc Mathematics					
Course Name		Matrix Algebra and Number Theory					
Type of Course	Discipline Specific Component (DSC A)						
Course Code	M24MT4DSC200						
Course Level	200						
Course Summary	This course provides an introduction to the fundamental concepts and techniques of matrix algebra and number theory. The first two modules deal with matrix algebra and solutions of systems of linear equations. Third module starts with basics for theory of numbers which will be followed by the Division algorithm, Euclidean algorithm etc. Fourth Module involves some classical theorems by Fermat, Wilson and Euler.						
Semester	4	Credits	5			4	
Course Details	Learnin g Approac h	Lectur e 3	Tutoria 1 0	Practicu m 2	Other s 0	Total Hours/wee k 5	
Pre- requisite s,If any	Basic idea about m	natrices, in	ntegers an	d primes.			

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, the student will be able to		
1	Demonstrate a thorough understanding of the basic concepts of matrix algebra and formulate systems of linear equations into matrices	U	1, 3,4,5,6
2	Analyze the properties of systems of linear equations and their solutions	An	1,2,3
3	Demonstrate understanding of fundamental concepts in number theory, including congruence, divisibility, GCD etc	U	1,2,3
4	Analyze Fermat's Little Theorem, understanding itssignificance and implications	An	1,2,3,4
5	Apply computational software and tools in matrix computations and also concepts of number theory.	A	1,2,3,4,5,6
*Remen	ber (K), Understand (U), Apply (A), Analyse (An) (C), Skill(S), Interest (I) and Ap	, Evaluate (preciation ((E), Create (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Matrix Operations	1	
	1.2	Properties of matrix operations	1	
1	1 1.3 Different types of matrices		1	20
	1.4	4 Matrix representation of system of linear equations		
	1.5	Elementary row transformations and elementary matrices	2	

	1.6Gaussian Elimination, Row-echelon form, Hermiteform					
		Problems (Practicum)	1, 2			
	Text only)	1: Chapter 1; Chapter 3 [upto Exercise 3.10 - Theo of all theorems in Chapter 3]	rems (Stat	ement		
	2.1	Linear combination and independence/dependence ofrows and columns of matrices	1, 2			
	2.2	Row equivalent matrices	1, 2			
	2.3	Row rank, column rank and rank of a matrix	1, 2	15		
2	2.4	Normal form and equivalent matrices	1, 2, 5			
	2.5	Consistency of system of linear equations	1, 2, 5			
	2.6	Invertible Matrices	1, 2, 5			
		Problems (Practicum)	1, 2, 5			
	Text 1: Remaining portions of Chapter 3 and Chapter 4 [Theorems (Statement only) and their applications]					
	3.1	The Division Algorithm	3			
	3.2	The Greatest Common Divisor	3, 4			
	3.3	The Euclidean Algorithm	3	20		
	3.4	The Fundamental Theorem of Arithmetic	3, 4	_ ~		
3	3.5 The Sieve of Eratosthenes		3			
		Problems (Practicum)	3, 4			
	Text 2: Chapter 2 – Sections: 2.2 (Statements and applications only), 2.3 [Theorem 2.3 and 2.4(Statements only)], 2.4 [Theorem 2.7 and 2.8(Statementsonly and applications)]; Chapter 3 - Sections: 3.1 & 3.2 (Theorem 3.4 only)					
	4.1	Basic Properties of Congruence	3, 4, 5			
4	4.2	Fermat's Theorem and pseudoprimes	4, 5	20		

	4.3	Wilson's Theorem	4, 5			
	4.4	Euler's Phi Function and Theorem	3, 5			
		Problems (Practicum)	3,4,5			
	Text 2: Chapter 4 – section: 4.2; Chapter 5 – Sections: 5.2 (Up to Theorem 5.2), 5.3 (Up to Theorem 5.5); Chapter 7 – Sections: 7.2 (Theorem 7.2-Statement only and applications) & 7.3					
		Teacher Specific Contents				
5	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)					
		This content will be evaluated internal	v			

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and	Classroom Procedure (Mode of transaction)				
Approach	s, Blended				
		MODE OF ASSESSMENT			
	Α	Continuous Comprehensive Assessment (CCA)			
Assessment		Components	Mark Distribution		

		Teacher Specific Content			20 Marks	
Types		Quiz in	n any mode		5 Marks	
		Ass	5 Ma	arks		
	В	Sem	ester End E	xamination	(Written)	
			Questio	on Pattern		
		[Maximum Time 2 Hours, Maximum Marks 70]				
		Modulo	Part A	Part B	Part C	Total
		Module	2 Marks	5 Marks	10 Marks	Total
		Ι	3	2	1	6
		II	3	3	1	7
	1	ш	3	2	1	6
	1	IV	30	2	1	6
		Total no of questions	12	9	4	25
		Number of questions to be answered	10	6	2	18
		Total Marks	20	30	20	70

TEXT BOOKS:

- 1. Blyth, T. S., and E. F. Robertson. Basic linear algebra. Springer, 2007.
- **2.** Burton, David M.. *Elementary number theory (7th ed.)*. McGraw-Hill Education, 2017.

SUGGESTED READINGS:

- 1. Strang, Gilbert. *Introduction to linear algebra (5th ed.)*. Wellesley-Cambridge Press, 2016.
- 2. Lipschutz, S., Lipson, M.. Schaum's outline of theory and problems of linear algebra(4th ed.). McGraw-Hill.
- 3. Kumaresan, S. Linear Algebra: A Geometric Approach. PHI Learning., 2015.
- 4. Bronston, T. A., Costa, A. C. R. . *Linear algebra: An introduction (4th ed.*). Academic Press, 2013.

ADVANCED READINGS:

- 1. Apostol, T. M. . *An Introduction to Analytic Number Theory* (2nd ed.). Springer, 1976.
- 2. Niven, I., Zuckerman, H. S., Montgomery, H. L. An Introduction to Number Theory

(5th ed.). Wiley, 1991.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Proofs of theorems in Chapter 3 (up to exercise 3.10) and Chapter 4
- Use of computational software or tools (like Python, Sage math etc.) to perform thematrix operations in the modules 1 and 2
- Illustrate the technique of Sieve of Eratosthenes for finding all primes below a giveninteger (Chapter 3-Sec. 3.2 of Textbook 2)
- Apply Congruence relation to encrypt and decrypt a message using Caesar Cipher and Vigenere's approach. (Relevant Sections of Chapter 10 of Textbook 2)
- Proofs of theorems 2.3 and 2.4 of Textbook 2.

	Mar Atha	nasius C I	ollege (A FYUGP	utonomou SYLLABI	s), Koth US	amangalam
Programme			B Sc M	athematics		
Course Name		Fundamentals of Analysis				
Type of Course		Disci	pline Speci	fic Compone	ent (DSC	A)
Course Code		M24MT4DSC201				
Course Level	1-	ANA	SIUS	200		
Course Summar y	This cour numbers, mathemati solving sk in-depth re characteris importance presenting identifying comprehen variables, as well as exponentia	200 This course covers elementary properties of real and complex numbers, with a focus on analytic functions and various mathematical functions. Practical applications and problem- solving skills are emphasized throughout. The course provides an in-depth review of complex numbers, exploring their fundamental characteristics, exponential representations, and geometric importance. It delves into functions of complex variables, presenting the Cauchy-Riemann equations as a means of identifying analytic functions. The conclusion includes a comprehensive discussion of special functions of complex variables, such as inverse trigonometric and hyperbolic functions, as well as				
Semester	4		Credit s			4
Course Details	Learning Approac	Lecture	Tutorial	Practicum	Other s	Total Hours/wee k
	h	4	0	0	0	4
Pre- requisites, If any	Basic Set th	neory and C	Calculus			

Discipline Specific Component (DSC A) Fundamentals of Analysis

COURSE	OUTCOMES	(CO)
--------	----------	------

CO No:	Expected Course Outcome	Learning Domains	PSO No:		
	Upon the successful completion of the course, thestudent will be able to				
1	To understand the basic principles of set theory, including definitions of finite and infinite sets, cardinality, and operations on sets.	U	1,2,3		
2	Demonstrate a comprehensive understanding of the real numbers as a complete ordered field, distinguishing their properties from those of other algebraic structures with similarities to real numbers.	А	1,2,3,4,5		
3	Analyze the concept of completeness property in real numbers and apply the supremum property in mathematical analysis and problem-solving.	An	1,2,3,4		
4	Understand the basic properties of complex plane, its geometrical dimensions and complex functions	U	1,2,4,5		
5	Categorise the basic properties of some elementary functions of complex variables.	An	2,4,5,6		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Graphical visualization of ElementaryFunctions using Geogebra/Desmos	1	15
	1.2	Finite and Infinite Sets.	1	15
1	1.3	The Algebraic and Order Properties of R.	2	
	1.4	Absolute Value and the Real Line.	2	

	Text 1: Chapter 1 - Section: 1.3 (Concepts, statements of the theorems, informal proofs and problems only); Chapter 2 - Sections:						
	2.1 & 2.1	2.	-	1			
2	2.1	The Completeness property of R	2				
	2.2	Applications of supremum property	2	15			
	2.3	Intervals	2				
	Text 1: only),	Chapter 2 - Sections: 2.3, 2.4 (Theorems 2.	4.7 – State	ment			
	2.5 (Con	cepts, statements of the theorems and prob	<u>lems only).</u>				
	3.1	Basic Properties of Complex Numbers	4, 5				
	3.2	Exponential form of Complex Numbers	4, 5				
	3.3	Roots of Complex Numbers	4, 5				
	3.4	Regions in the complex Plane	4, 5				
	3.5	Functions of the complex Variables	4, 5	15			
3	3.6	Limits and Continuity	4, 5				
	3.7	Differentiation of Complex functions and CREquations	4, 5				
	3.8	Analytic and Harmonic functions	4, 5				
	Text 2: Sections: 1 to 12,15,16,18 to 22,24 to 26 (Concepts, statements of the theorems and problems only from sections 16, 21 and 22)						
		•	,				
	4.1	Exponential functions	5				
	4.2	Logarithmic functions	5				
	4.3	Trigonometric and Hyperbolic functions	5	15			
4		Inverse Trigonometric and	1	1			
	4.4	Hyperbolicfunctions	5				
	Text 2: Sections: 29 to 32, 34 to 36						

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

Its purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

	1	HANAS	IUSCO	17				
Teaching		Classroom Procedure (Mode of transaction)						
Approach		Lecture	e, Tutorial an	d Activity	oriented			
		M	DDE OF ASS	ESSMENT	C			
	A	Contir	uous Compi (C	rehensive A CA)	ssessment			
		Ca	Mark Distribution					
		Teacher	20 Marks					
		Quiz	5 Marks					
Assessment		As	5 Marks					
Types	В	Semester End Examination (Written)						
		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]						
			Part A	Part B	Part C	Total		
		Module	2 Marks	5 Marks	10 Marks			
		Ι	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		

	IV	3	2	1	6
	Total no of questions	12	9	4	25
	Number of questions to be answered	10	6	2	18
	Total Marks	20	30	20	70

TEXT BOOKS:

- 1. Bartle, Robert G., Sherbert, Donald R. *Introduction to Real Analysis (4thEdition)*, Wiley Internationals, 2000.
- 2. Brown, James Ward., Churchil, Ruel V. Complex Variables and Applications

SUGGESTED READINGS:

1. Denlinger, Charles. *Elements of real analysis*. Jones & Bartlett Learning, 2011.

(8thEdition

- 2. Abbott, Stephen. Understanding analysis. springer publication, 2015.
- 3. Ghorpade, Sudhir R., and Balmohan Vishnu Limaye. *A course in calculus and realanalysis*. New York: Springer, 2006.
- 4. Kumar, Ajit, Kumaresan, S. *A basic course in real analysis*. CRC press, 2014.
- 5. Ponnusamy, S., Herb Silverman. *Complex variables with applications*. SpringerScience & Business Media, 2007.
- 6. Krantz, Steven G. Complex Variables: a physical approach with applications and MATLAB. CRC Press, 2007.
- 7. Kasana, Harvir Singh. *Complex variables: theory and applications*. PHI Learning Pvt.Ltd., 2005.
- 8. Zill, Dennis G., and Patrick D. Shanahan. *Complex analysis: A first course withapplications*. Jones & Bartlett Publishers, 2013.
- 9. Choudhary, B. *The elements of complex analysis*. New Age International, 1993.

ADVANCED READINGS:

1. Howie, John M. Real analysis. Springer Science & Business Media, 2006.

- Rudin, Walter. *Principles of mathematical analysis*. Vol. 3. New York: McGraw-hill,1976.
- 3. Royden, Halsey Lawrence, and Patrick Fitzpatrick. *Real analysis*. Vol. 2. New York:Macmillan, 1968.
- 4. Saff, E. B., Snider, A. D. Fundamentals of Complex Analysis with Applications to Engineering, Science and Mathematics, (2002).
- 5. Jeffrey, Alan. Complex analysis and applications. CRC Press, 2005.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Principle of strong mathematical induction.
- Well ordering property
- Check whether C satisfies the completeness property.
- Binary representation and decimal representation of real numbers.
- Plot and analyse complex functions using available software.
- Applications of complex numbers and complex functions in different areas.
- Studies on multi valued complex functions
- Formal proofs of theorems in section 1.3
- Proof of theorem 2.4.7
- Proof of theorems in section 2.5

Discipline Specific Elective – DSE

Data Processing and Visualization using Python

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B Sc Ma	thematics		
Course Name	E	Data Process	sing and Vi	sualization u	sing Pyth	on
Type of Course	Discipline Specific Component (DSC A)					
Course Code	M24MT4DSE200					
Course Level		- ANN	2	00		
Course Summary	Data processing and visualization are two core components in Data Science. This course provides a strong foundation in data processing and various visualization tools. It provides a deep knowledge in <i>pandas</i> which is a built-in library in Python for data processing. Data visualization is done using <i>matplotlib</i> and <i>seaborn</i> which are the built-in libraries in Python for plotting various graphs. This course helps to understand the nature of data, processing data for removing noise and to visualize the data to understand the trends and patterns in data.					
Semester	4	Credits				4
Course Details	Learning Approach	Lecture	Tutorial	Practicum	Others	Total Hours/week
Pre- requisites,If any		3	0	Z	0	5

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		

1	Understand different types of data and introduction to pandas dataframe.	U	1,2,3			
2	Understand and apply the functions in dataframes in pandas.	U, A	1,3,5			
3	Understand, apply and analyse various graphs in matplotlib	U, A, An	1,2,3,4,5,6			
4	Understand, apply and analyse various graphs in seaborn	U, A, An	1, 3			
5	Apply, analyze and evaluate various visualization tools based on case studies.	A, An, E	1,5,6			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Introduction, Types of data- Structured data-continuous data, discrete data, categorical data, nominal data, ordinal data, ratio-scaled (exponential) data.	1	
	1.2	Introduction to Pandas, data structures –Series, DataFrame,	1	10
1	1.3	Reading from csv files, writing back to csv files	1	
	1.4 Reading from Excel files, writing back to Excel files.			
		Problems (Practicum)		
	Text 1	: Chapter 1, Chapter 2		·
	2.1	Need for data cleaning, Examples for data cleaning	2	
	2.2	Extracting data using loc() and iloc() functions, descriptive statistics functions –count(), sum(), mean(), median(), mode(), var(), std(), min(), max(), abs(), prod(), cumsum(), cumprod()	2	
2	2.3	Inserting columns into dataframes, deleting rows and columns from dataframes	2	15
	2.4	Concatenating data frames, merging/joining dataframes.	2	

2.5Group by and aggregate functions2
Problems (Practicum) 2

3	3.1	Introduction to matplotlib,	3,5	25
	3.2	Bar chart, Grouped bar chart, Stacked bar chart	3,5	23
	3.3	Histogram, Line chart, Pie chart	3,5	
	3.4	Scatterplot, Bubble plot	3,5	
	3.5	Box plot, Violin plot	3,5	
	3.6	Heatmap, Stem plot, Polar plot	3,5	
	3.7	Quiver plot, Stream plot Contour plot, Triangulation plot	3,5	
	Text 1:	: Chapter 5		
	4.1	Introduction to coopern metalotlik vs. coopern		
4	4.1	introduction to seaborn, matpionito vs. seaborn	4,5	
	4.2	Bar chart, Grouped bar chart, Histogram, Line	4,5	
		chart		25
	4.3	Scatter plot, Box plot, Violin plot	4,5	
	4.4	Heatmap, Regression plot, LM plot	4,5	
	4.5	KDE plot, Cluster plot, Facet grid	4,5	
	4.6	Pair plot, Joint plot, Gantt Chart	4,5	
	4.7	Correlogram, Q-Q plot	4,5	
	Text 1	: Chapter 6		
		Teacher Specific Contents		
5	(specified by the teacher concerned)	a visit etc. as	
		This content will be evaluated internally		
1	1			

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning Approach	Classroom Procedure (Mode of transaction)							
		MODE OF ASSESSMENT						
	A	Continue	ous Compre	hensive Asse	SSMent (CCA) Mark Distr) ribution		
		Teacher	Specific Cont	ent	20 Ma	rks		
	1	Quiz	5 Marks					
		A	5 Marks					
	В	Semester End Examination (Written)						
Aggaggement		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]						
Types		Module	Part A	Part B	Part C	Total		
			2 Marks	5 Marks	10 Marks	Totur		
		I	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
		Total no of questions	12	9	4	25		

Number of questions to be answered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOK:

1. Jeeva Jose, Data Analysis and Visualization using Python, Khanna Publishers, New Delhi, 2024.

SUGGESTED READINGS:

- 7. Gypsy Nandi, Rupam Kumar Sharma, Data Science Fundamentals and Practical Approaches, BPB publications, 2020.
- Vishal Goyal, Monika Bansal, Munish Jindal, Harmandeep Kaur, Data Science using Python: A Step-by-Step Practical Approach for Beginners, DPS Publishing House, 2022.
- 9. B. SrikanthSwarajya Lakshmi V PapineniSyed Khasim, Fundamentals of Data Science, Walnut Publication, 2022.

Web Resources:

- https://intellipaat.com/blog/tutorial/data-science-tutorial/
- <u>https://www.tutorialspoint.com/matplotlib/index.htm</u>
- https://www.javatpoint.com/python-seaborn-library

Wrathematical Wrotening							
	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme		B.Sc. Mathematics					
Course Name		Γ	Mathemat	ical Modelliı	ng		
Type of Course	Discipline Specific Elective – DSE						
Course Code	M24MT4DSE201						
Course Level	SIL		- ~	200			
Course Summary	Mathematical modelling is a process that uses math concepts to explain systems, functions and events. Nearly any industry can benefit from mathematical modelling, but it's most commonly used in areas such as engineering, computer science, social science and natural science. Mathematical modelling is described as conversion activity of a real problem in a mathematical form. Modelling involves to formulate thereal-life situations or to convert the problems in mathematical explanations to a real or believable situation.						
Semester	4 Credits 4					4	
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week	
Pre-	Type	3	U	Δ	U	3	
requisites,If any	Basic Calcu	lus and Dif	ferential E	quations			

Discipline Specific Elective – DSE Mathematical Modelling

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		

1	Get an insight into different Mathematicaltechniques that are applied in real life.	U	1,2,3	
2	Understand the use First Order Differentialequation to create mathematical models of real life.	U	1,2,5,6	
3	Solve Mathematical Modelling of geometricalproblems using first order differential equation.	А	1,2,3,4,5	
4	Solve Mathematical Modelling of populationproblems using first order differential equation. Use Second Order Differential equation to createmathematical models of real life.	U, A	1,2,3,4	
5	Solve Mathematical Modelling of trajectory relatedproblems using second order differential equation.	А	1,2,3,4,5,6	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Content	for	Classroom	transaction	(Units)

Module	Units	Course Description	CO No:	Hours	
1	1.1	Simple Situations Requiring MathematicalModelling	1		
	1.2	The technique of Mathematical Modelling	1		
	1.3	Classification of Mathematical Models	1	15	
	1.4	Some Characteristics of Mathematical Models	1		
	1.5	Modelling through Geometry, A	1		
		Problems (Practicum)		-	
	Text 1: Chapter 1 - Sections: 1.1 to 1.8				
	2.1	Modelling through Differential Equations	2		
	2.2	Linear Growth and Decay Models	2		

2	2.3	Non-linear Growth and Decay Models	2	20	
	2.4	Compartment Models	2		
	2.5	Mathematical Modelling in Dynamics through Ordinary Differential Equations of the first order.	3		
		Problems (Practicum)			
	Text 1: Chapter 2 -Sections: 2.1 to 2.5				
	3.1	Mathematical Modelling in PopulationDynamics	4		
3	3.2	Mathematical Modelling in Epidemics	4	20	
	3.3	Compartment Models	4		
	3.4	Economics Related Models	4		
		Problems (Practicum)			
	Text 1: Chapter 3 - Sections: 3.1 to 3.4				
4	4.1	Mathematical Modelling of Planetary Motion	4		
	4.2	Mathematical Modelling of Circular motionand Motion of Satellites	4	20	
	4.3	Mathematical Modelling through LinearDifferential Equations of Second Order	5		
	4.4	Miscellaneous Problems	5		
		Problems (Practicum)			
	Text 1: Chapter 4 - Sections: 4.1 to 4.4.				
	Teacher Specific Contents				
5	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)				
	This content will be evaluated internally				
Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)							
andLearning Approach	Lec Ass	ture, Teaching, Int ignment,Library We	eractive Insort ork and Gro	struction, Se oup Discussi	eminar, Group on			
	<	MA SHANA	ODE OF A	SSESSME	NT			
	A	Contin	uous Com	prehen <mark>sive</mark> (CCA)	Assessment			
		Con	Mark Distribut	ion				
Assessment Types		Teacher Specific Content			20 Marl	KS		
		Quiz in	5 Marks					
		Assignment			5 Marks			
	В	Sei	on (Written)					
		Question Pattern						
		[Maximu	um Time 2	Hours, Max 70]	ximum Marks			
		Madula	Part A	Part B	Part C	Total		
		Module	2 Marks	5 Marks	10 Marks	Total		
		Ι	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
		Total no of question s	12	9	4	25		

Number of questions to be answered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOK:

1. Kapur, J. N. Mathematical Modelling 2nd Edition New Age International PrivateLimited, 2021.

SUGGESTED READINGS:

- 1. Edward A Bender. An Introduction to Mathematical Modelling, 1st edition, DoverPublications Inc, 2003.
- 2. Rutherford Aris. *Mathematical Modelling Techniques, new edition*, DoverPublications Inc, 2003.
- 3. Seyed M. Moghadas., Majid Jaberi Douraki. *Mathematical Modelling: A GraduateTextbook, first edition, Jon Wiley and Sons* Inc, 2019.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

• Mathematical Modelling of Geometrical Problems through Ordinary DifferentialEquations of the first order. (section 2.6).

Discipline Specific Elective – DSE

Transforms and Fourier Series

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme			B.Sc. M	athematics			
Course Name		Tra	nsforms a	nd Fourier s	eries		
Type of Course		Disc	ipline Spe	cific Elective	- DSE		
Course Code	T	JANA	M24M7	F4DSE202			
Course Level	1 Ste		- 1	200			
Course Summary	The content application of Theory of w Theaim of th techniques re equip them t	The content of the course has wide application in the fields such as application of PDE, Digital Signal Processing, Image Processing, Theory of wave equations, Differential Equations and many others. Theaim of the course is to familiarise the students various tools and techniques related to Laplace transform and Fourier series. Also to equip them to solve applied problems.					
Semester	4	Credits				4	
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week	
Pre- requisites,If any	Approach Calculus, Lin	3 ear Algebr	0 ra, Comple	2 x Numbers	0	5	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Understand and apply Laplace transform, inverseLaplace transform and to solve ODE	А	1,2,3,4,5
2	Apply various operations on transforms	А	1,2,4,5,6

3	Solve problems using Fourier series	С	1,2,3,6			
4	Evaluate Fourier sine and cosine transforms in various Scientific problems	Е	1,2,3,4,5			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Laplace Transform, Inverse Transforms, Linearity, Shifting.	1	
1	1.2	Transforms of Derivatives and Integrals,Differential equations.	1	15
	1.3	Unit Step functions. Second shifting theorem, Dirac's delta function	1	
		Problems (Practicum)	1	
	Text 1: Ch	hapter 5 - Sections: 5.1 to 5.3		
	2.1	differentiation and integration of transforms,	2	
2	2.2	Convolution, integral equations	2	20
	2.3	partial fractions, Differential Equations	2	
		Problems (Practicum)	2	
	Text 1: Cł	hapter 5 - Sections: 5.4 to 5.6		1
	3.1	Fourier series	3	
3	3.2	Functions of any period p=2L	3	20
	3.3	Even and odd functions and half rangeexpansions	3	
		Problems (Practicum)	3	1

	Text 1: Chapter 10 - Sections: 10.2 to 10.4						
	4.1	Fourier sine and cosine transforms,	4	20			
4	4.2	4.2 Fourier transform, Tables of transform					
		Problems (Practicum)	4				
	Text 1: (Chapter 10 - Sections: 10.9 to 10.11					
5	(This can be either classroom teaching, practical session, field						
	visit etc.	visit etc. asspecified by the teacher concerned)					
	This content will be evaluated internally						

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)					
Approach	Lectu	are, Teaching, Interactive Instruction, Semi Assignment,Library Work and	nar, Group l Group Discussion			
	MODE OF ASSESSMENT					
	Α	A Continuous Comprehensive Assessment (CCA)				
		Components	Mark Distribution			
		Teacher Specific Content	20 Marks			
		Quiz in any mode	5 Marks			
		Assignment	5 Marks			
	B Semester End Examination (Written)					
		Question Pattern				
Assessment		[Maximum Time 2 Hours, Maximum Marks 70]				

Types		Part A	Part B	Part C	T - (- 1
	Module	2 Marks	5 Marks	10 Marks	Total
	Ι	3	2	1	6
	II	3	3	1	7
	III	3	2	1	6
	IV	3	2	1	6
	Total no of questions	12	9	4	25
	Number of questions to be answered	10	6	2	18
1	Total Marks	20	30	20	70

TEXT BOOK:

1. Kreyszig, Erwin. Advanced Engineering Mathematics, Wiley student edition, 8thedition, 2006.

SUGGESTED READINGS:

- 1. Lokenath Debnath, Dambaru Bhatta . *Integral Transforms and Their Applications(3rd ed.)*. CRC Press Taylor & Francis Group, 2015.
- 2. Baidyanath Patra. *An Introduction to Integral Transforms*. CRC Press, 2018, IstEdition.
- 3. Joel L. Schiff. *The Laplace Transform-Theory and Applications*. Springer 1999.
- 4. Rajendra Bhatia. *Fourier Series (2nd ed.) Texts and Readings in Mathematics*. Hindustan Book Agency, Delhi 2003.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Problem solving from module 1, 2 and 3
- Problems relating to Fourier transform

Discipline Specific Component (DSC B) Essential Mathematics for Science

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B Sc C	hemistry	, B Sc Phy	vsics, B Sc S	tatistics	etc.
Course Name		Essential	Mathem	atics for Sc	ience	
Type of Course	Discipline Specific Component (DSC B)					
Course Code			A24MT4	DSC202		
Course Level	MA		200			
Course Summar y	This Mathematics minor course complements and enhances the undergraduate programmes on science disciplines such as Physics, Chemistry etc., by enabling the students to understand the concepts of complex numbers and analytic functions, to solve differential equations of different types, to identify different conic sections and its applications in possible areas and to determine unit tangent vector, principal normal vector, and curvature of different curves.					
Semester	4	Credits				4
Course Details	Learning Approac	Lectur e	Tutoria l	Practicu m	Other s	Total Hours/wee k
	h	3	0	2	0	5
Pre- requisites, If any	Basic awareness derivatives, and	s of coord integrals	inate syste	ems, vectors	, functio	ns,

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		

1	Apply C-R equations to check the analyticity of complex functions	А	1,2,3,4		
2	Solve equations in complex variables and differential equations	А	1,2,4,5,6		
3	Identify conic sections from its equations and Visualize curves	Е	1,2,3		
4	Develop applications of mathematical concepts inscientific/real life problems	С	1,2,3,4		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours	
1		Complex Functions			
	1.1	Complex Numbers, Sums and Products, Basic Algebraic Properties, moduli, conjugates, Exponential and Polar Forms, Products and Powers in Exponential form	1		
	1.2	Functions of Complex Variables, Separation into Real and Imaginary parts, Limits and Continuity	1	20	
	1.3	Derivatives, Analytic Function, Cauchy- Riemann Equations, Laplace Equation, HarmonicFunction	2		
		Problems (Practicum)	1, 2		
	Text 1: Chapter 1 – Sections: 1 to 7; Chapter 2 – Section 22, 24 to 26 Theorems – Statements Only				
2		Differential Equations			
	2.1	Degree, Order, Solution of Differential Equations, Variable Separable method	2, 4		
	2.2	Exact Differential Equations	2, 4	18	
	2.3	Linear Differential Equations, Bernoulli's	2, 4		

		Equations					
		Problems (Practicum)	2, 4				
	Text 2: Chapter 1 – Sections: 1.1 to 1.5 Theorems – Statements Only						
3		Analytic Geometry					
	3.1	Polar coordinates	3				
	3.2	Conic sections	3	1 7			
	3.3	Conic section in polar coordinates	3				
		Problems (Practicum)	3				
	Text 3: (11.7The	Chapter 11 – sections: 11.3,11.6 & prems – Statements Only					
	0						
	4.1	Curves in Space and tangents, Velocity andAcceleration, Arc length in space	4	2			
	4.2	Curvature and Normal vectors of a curve	4				
4	4.3	Directional derivatives and gradient vectors	4				
		Problems (Practicum)	4				
	Text 3: (14.5Theo	Chapter 13 – Sections: 13.1,13.3,13.4; Chapter 14 prems – Statements Only	4 – Section	:			
5	Teacher Specific Contents(This can be either classroom teaching, practical session, field visitetc. asspecified by the teacher concerned)This content will be evaluated internally						

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)						
andLearning Approach	Dire	ct Instruction, Bra	instorming L Active C	ecture, Expl co-operative	icit Teaching, Learning,	,	
		M	ODE OF AS	SESSMEN'	Г		
	A	A Continuous Comprehensive Assessment (CCA)					
		Co	omponents		Mark Distribut	ion	
		Teacher	Specific Cor	ntent	20 N	Iarks	
	7	Quiz in any mode			5 Marks		
		Assignment			5 Marks		
	В	B Semester End Examination (Written)					
Assessment Types		Question Pattern [Maximum Time 2 Hours, Maximum Marks 701					
			Madula	Part A	Part B	Part C	Tatal
		Module	2 Marks	5 Marks	10 Marks	Total	
		I	3	2	1	6	
		II	3	3	1	7	
		III	3	2	1	6	
		IV	3	2	1	6	
		Total no of questions	12	9	4	25	
		Number of questions to be answered	10	6	2	18	
		Total Marks	20	30	20	70	

TEXT BOOKS:

- 4. James Ward Brown, Ruel V. Churchill. *Complex Variables and Applications, EighthEdition,* McGraw Hill, 2009
- 5. Simmons, G.F., Krantz, S.G. Differential Equations, Tata

McGraw Hill-NewDelhi, 2007.

6. Thomas, George B Jr. *Thomas' Calculus, Twelfth Edition*, Pearson, 2010SUGGESTED

READINGS:

- 5. Grewal, B. S., *Higher Engineering Mathematics*, 44th Edition, Khanna Publishers, 2021.
- 6. Anton, H., Bivens, Devis. Calculus, tenth Edition, Wiley India.
- 7. Kreyszig, E. Advanced Engineering Mathematics, Wiley, India.
- 8. Siddiqi, A.H., Manchanada, P. *A first course in Differential Equations*, Mc Millan.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Proofs of theorems from module 1, 2, 3 & 4
- > Solution of equations in Complex variables, Regions in the Complex plane
- Homogeneous Differential equations, Integrating Factors of Differential Equations
- Visualization of curves and conic section, Obtaining Points of farthest and closestapproach of Planets/ Satellites
- > Integration in vector fields, Finding Work done, Flow, circulation and flux
- > Text 1-Chapter 1 (Roots of complex numbers, Regions in complex plane)
- Text 2 Chapter 1 (Homogeneous Differential Equations, Integrating factors)
- Text 3 Chapter 16 (Line integrals, Work, Circulation and Flux)

Discipline Specific Component (DSC B)

Computational Methods for Business and Economics

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	BA Economics and B Com
Course Name	Computational Methods for Business and Economics
Type of Course	Discipline Specific Component (DSC B)

Course Code	M24MT4DSC203							
Course Level		200						
Course Summary	Mathematical methods and theories applicable in economics and business to analyse real life problems are included in the course. First module provides an understanding of the way in which financial calculations are worked out. Second module deals with different methods of solving systems of equations and the many varied applications of such systems to business and economics. Optimization of functions using their derivatives is included in the third module. Linear programming is helpful in business and economics where it is often necessary to optimize a profit or cost function subject to several inequality constraints. The graphic approach for maximization and minimization linear programming problems is also illustrated. Module four deals with the applications of calculus in economics and business							
Semester	4	Credits	T_	EGE		4		
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week		
	Approach	3	0	2	0	5		
Pre- requisites,If any	Graphing fun variable funct Basics of loga	Graphing functions, Basics of differential and integral Calculus, Multi- variable functions and partial differentiation, Percentage calculation, Basics of logarithmic and exponential functions						

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	understand the difference between simple and compound interest	U	1,2,3
2	evaluate a geometric series and calculate the totalinvestment obtained from a regular savings plan.	Е	1,2,3,4,5
3	use net present values to appraise investment projects and calculate the internal rate of return, thepresent value of an annuity	А	1,2,3,4
4	understand functions, classical optimizationtechniques and marginal concepts in economics	U	1,2
5	analyse the real-life problems in business and economics and to model it mathematically	A, An, C	1,2,3
*Reme	mber (K), Understand (U), Apply (A), Analyse (A Create (C),Skill (S), Interest (I) and	n), Evaluato Appreciati	e (E), on (Ap)

COURSE OUTCOMES (CO)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Mathematics of Finance		
	1.1	Compound Interest	1	15
	1.2	Geometric Series	2	
	1.3	Investment Appraisal	2, 3	
		Problems (Practicum)	1,2,3	
	Text 2: C	Chapter 3 – Sections: 3.2 to 3.4		
2		Mathematical Economics		
	2.1	Introduction to System of Equations	3	

	2.2	Graphical Solutions	3	
	2.3	Supply-and-Demand Analysis	3, 4	
	2.4	Break-Even Analysis	3, 4	20
	2.5	Elimination and Substitution Methods	3, 5	
	2.6	Income Determination Models	3, 5	
	2.7	IS-LM Analysis	3	
		Problems (Practicum)	3, 4, 5	
	Text 1: C	Chapter 4 – Sections: 4.1 to 4.7		
3		Optimization Techniques		
	3.1	Use of Graphs in LPP, Maximization UsingGraphs	4, 5	
	3.2	The Extreme-Point Theorem, MinimizationUsing Graphs	4, 5	
	3.3	Optimization of Functions, The Successive-Derivative Test	4, 5	25
	3.4	Marginal Concepts in Economics	4, 5	
	3.5	Optimizing Economic Functions for Business	4, 5	
	3.6	Relationship Among Total, Marginal, andAverage Functions	4, 5	
		Problems (Practicum)	4, 5	
	Text 1: C 10.10	Chapter 7 – Sections: 7.1 to 7.4; Chapter 10 – S	Sections: 10	.6 to

4		Applications of Mathematics in Economics and Business		
	4.1	Functions of Several Independent Variables	3, 4	
	4.2	Constrained Optimization problems with Lagrange Multipliers	3, 4	15
	4.2	Applications of definite integral in consumers and producers surplus	3, 4, 5	
		Problems (Practicum)	3, 4, 5	
	Text 1:	Chapter 12 – Section: 12.11; Chapter 13 – Section	ns: 13.1 & 13	.6
		Teacher Specific Contents		
5	(This car specified	n be either classroom teaching, practical session, fie by the teacher concerned)	eld visit etc. as	7

This content will be evaluated internally

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning Approach		Classroom Procedure (Mode of transaction)			
	Direct Gro Rep	Instruction, Brain Storming Approach, Interactive instruction, upDiscussion, Presentation by Individual Student/ Group presentatives			
		MODE OF ASSESSMENT			
	A	Continuous Comprehensive Assessment (CCA)			

Assessment		0	Components		Mark Distributi	on		
Types		Teache	er Specific Co	ontent	20 Marks			
		Qui	z in any mo	de	5 Ma	arks		
		A	Assignment		5 Ma	arks		
	В	S	emester End	l Examination	(Written)			
		[Maxir	Question Pattern [Maximum Time 2 Hours, Maximum Mar 70]					
		Module	Part A	Part B	Part C	T 1		
			2 Marks	5 Marks	10 Marks	Total		
		Ι	3	2	1	6		
		II JAN	SIU3	3	1	7		
	5	m	3	2	1	6		
		IV	3		1	6		
		Total no of questions	12	9	4	25		
		Number of questions to be answered	MANGP	6	2	18		
	1	Total Marks	20	30	20	70		

TEXT BOOKS:

- 3. Edward T Dowling, *Mathematical Methods for Business and Economics*, Schaum'sOutline Series, McGraw Hill, 2009.
- 4. Ian Jacques, *Mathematics for Economics and Business*, 5th Edition, Prentice Hall,2006.

SUGGESTED READINGS:

- 5. Taro Yamne, *Mathematics for Economists-An elementary survey*, Prentice -Hall, Inc.
- 6. Robert Brechner, *Contemporary Mathematics for Business and Consumers*, Fifth Edition
- 7. Das, N. G., Das, J K. *Business Mathematics and Statistics*, Tata McGraw-Hill, 2012.
- 8. Martin Anthony, Norman Biggs, *Mathematics for economics and finance Methods andModelling*, Cambridge University Press, 2012.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

> Application mathematics in economics and business using spreadsheets

Foundation Component - VAC

Business Mathematics

Г

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme]	B Sc Math	nematics			
Course Name		Bu	isiness Ma	athematics			
Type of Course	Foundation Component - VAC						
Course Code			M24MT4	VAC200			
Course Level	N N		20	0			
Course Summar y	This course pr relevant to bu sessions using through hands Students will analyse econom scenarios, mak problems.	This course provides a solid foundation in mathematical concepts relevant to business applications. The inclusion of practical lab sessions using Excel enhances the understanding of these concepts through hands-on experience and real-world problem-solving. Students will gain proficiency in applying mathematical tools to analyse economic scenarios, make informed decisions, and solve business-related					
Semester	4	Credits				3	
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k	
Pre- requisites, If any	n Basic Knowledg	3 ge in Matho	0 ematics	0	0	3	

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, the student will be able to		
1	Perform various matrix operations and formulate real life problems into matrix and solve	А	1,2,3,4
2	Sketch graphs of linear equations and solve simultaneous equations using graphical method	А	1,2,3,4,5
3	Formulate and solve system of linear equations from real life problems	С	1,2,3,4,5,6
4	Apply excel spreadsheet functions to perform matrix operations and to solve simultaneous equations and linear programming problems	A, S	1,2,3,4,5,6
5	Learn Freehand Method, Semi-average method, Moving average method & Method of Least squares to analyse underlying causes of trends or systematic patterns over time.	An, A	1,2,3,4
*Reme	mber (K), Understand (U), Apply (A), Analyse (A Create (C),Skill (S), Interest (I) an	An), Evalua ad Appreciat	te (E), ion (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Matrix Algebra		
	1.1	Introduction to matrices and vectors	1	
		Basic principles of matrix multiplication,		
	1.2	Matrix multiplication – the general case (usingexcel)	1,4	
	1.3	The matrix inverse and the solution	1	
	1.4	Determinants (using excel)	1, 4	
	1.5	Minors, cofactors and the Laplace expansion	1	

1.6	The transpose matrix, the cofactor matrix, the adjoint and the matrix inverse formula (Exclude the derivation of the matrix-inverse formula)	1
1.7	Application of the matrix inverse to the solution of linear simultaneous equations(using excel)	1, 4
1.8	Cramer's rule	1
1.9	Input- Output Analysis	1

Text 1: Chapter 15 - Sections 15.1 to 15.9 & 15.12

2	1	Linear Programming Problems		
	2.1	Linear Equations: Straight line graphs, An Economic Application- Supply and Demand	2	
	2.2	Simultaneous Equations	2	15
	2.3	Linear Inequalities: Inequalities & EconomicApplications	2	
	2.4	Linear Programming - Formulation andGraphic Solution (using excel)	3,4	
	Text 2 Three Chapt Text3:	Equations in Three Unknowns and Gauss er 2 – Sections: 2.1 & 2.2 Chapter 2 (excluding section 2.5)	ig Compl sian Elim	ination);
3		Interpolation and Time Series Analysis		12
	3.1	Time Series, Necessity of time series analysis	5	
	3.2	Components of time series, Some adjustments of time series data	5	
	3.3	Measurement of trend: Freehand Method, Semi-average method, Moving average method, Method of Least squares. (Linear Trend only)	5	
	Text 4	: Chapter 18 - Sections 18.1 to 18.8		

	Teacher Specific Contents
4	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)
	This content will be evaluated internally

	Classroom Procedure (Mode of transaction)
	Verbal Exposition
Teaching	Case Studies: Applying matrix algebra to business scenarios.
and Learning Approach	In-Class Demonstrations: Visualizing matrix operations in action.
Approach	Think-Pair-Share Activities: Encouraging peer collaboration in understandingconcepts.
	Flipped Classroom Approach: Pre-learning materials before class discussions.

		12000 5					
	Sc	enario-based Learnin	ng: Learning scenario	through hyp os.	othetical busir	ness	
	Onli	ne Quizzes and Exer	rcises: Reinfo	orcing learnin	ng through pra	ctice.	
	C	Concept Mapping Ex	ercises: Crea interrelatedc	ting visual re oncepts.	epresentations	of	
		мо	DE OF ASS	SESSMENT	1		
		Continuor	is Compreh	ensive Asse	ssment (CCA	.)	
	Α	Components			Mark Distribution		
		Teacher Specific Content			20 Marks		
		Assignment			5 Marks		
		Semester End Examination (Written)					
		Question Pattern					
Assessment		[[Maximur	n Time 90 N	finutes, Max 50]	ximum Marks	5	
Types		Module	Part A	Part B	Part C	Total	
	В	wodule	1 Marks	5 Marks	10 Marks	TOtal	
		Ι	4	2	1	7	
		II	4	2	2	8	

III	4	2	1	7
Total no of questions	12	6	4	22
Number of questions to be answered	10	4	2	16
Total Marks	10	20	20	50

TEXT BOOKS:

- 1. Rosser, Mike, and Piotr Lis. *Basic mathematics for economists*. 3rd ed. Routledge,2016.
- 2. Pemberton, Malcolm, and Nicholas Rau. *Mathematics for economists: anintroductory textbook*, 4th ed. Manchester University Press, 2016.
- ND, Vohra. "Quantitative techniques in management.", 3rd ed. Tata McGraw HillNew Delhi, 2007.
- 4. Ghosh, Ram Krishna, and Suranjan Saha. *Business Mathematics and Statistics*, (Algebra, Geometry, and Business Statistics). New Central Book Agency, 2019.
- 5. Harmon, Mark. "Step-by-step optimization with Excel Solver." *Excel Master Series*, 2011.

SUGGESTED READINGS:

- Mavron, Vassilis C., and Timothy N. Phillips. *Elements of Mathematics for Economics and Finance*. Classroom Companion: Economics. Springer Cham, 2023.
- 2. Newbold, Paul, et al. *Statistics for Business and Economics*. Pearson EducationLimited, 2023

ADVANCED READINGS:

- 1. Manna, Asim Kumar. *Business Mathematics and Statistics*, McGraw Hill Education(India) Private Limited, 2018.
- 2. Bradley, Teresa. *Essential Mathematics for Economics and Business*, 4th edition, JohnWiley & Sons, 2013.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS

- Lab sessions using excel spreadsheet to perform matrix multiplication and to evaluated terminants.
- Lab sessions using excel spreadsheet to find the inverse of a matrix and to solvesimultaneous equations

- Lab sessions using excel spreadsheet to solve linear programming problems (ReferText 5)
- Practical sessions can be included

Foundation Component - SEC

Document preparation using LaTeX

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme			B Sc M	athematics			
Course Name		Document preparation using LaTeX					
Type of Course	Foundation Component - SEC						
Course Code	M24MT4SEC20						
Course Level				200			
Course Summary	This course introduces students to the LaTeX typesetting system, a powerful tool for document preparation widely used in academia and industry. Building on basic LaTeX concepts, students will learn advanced techniques for creating professional-quality documents, including complex formatting, mathematical typesetting, and bibliography management.						
Semester	4	4 Credits 3					
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/Week	
_	Approach	3	0	0	0	3	
Pre- requisites,If any	Computer Kr	Computer Knowledge					

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		

1	Explain the fundamental principles of LaTeX typesetting	U,S	1,2,3		
2	Apply advanced LaTeX formatting techniques tocreate professional-quality documents	A,S	1,2,3,4,5		
3	Analyse and troubleshoot common errors in LaTeX documents	A,S	1,2,3,4,5,6		
4	Create and customize bibliographies usingBibTeX in LaTeX	C,S	1,2,3		
5	Demonstrate effective collaboration using LaTeXfor group writing projects	A,S	1,3,4,5		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C) Skill (S) Interest (I) and Appreciation (An)					

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Preparing the input file	1	
	1.2	Sentences and paragraphs, the document, sectioning, displayed material	1	
	1.3	Running LaTeX	1,3	18
1	1.3	Changing the type style	2	
	1.4	Mathematical Formulas: common structures, Mathematical symbols, Arrays, Delimiters, Multiline formulas, Putting one thing above another, spacing and changing style in math mode.	2	
	Text 1: Chapter 2 – Sections: 2.1 to 2.3; Chapter 3 – 3.3		Sections: 3	3.1 &
	2.1	Defining commands and environments	3	

2	2.2	Figures and other floating bodies: Figures and Tables	2	12
	Text 1:	Chapter 3 – Sections: 3.4 & 3.5.1		

	3.1	3					
3	3.2	Bibliography and citation	4	15			
	3.3	3.3 Books					
	3.4 Slides: Slides and overlays		5				
	Text 1: Chapter 4 – Sections: 4.2 & 4.3; Chapter 5 – Sections: 5.1 & 5.2.1						
		Teacher Specific Contents	<i>.</i>				
4	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)						
	This content will be evaluated internally						

HAMANGA

		Classroom Procedure (Mode of tr	ansaction)		
Teaching andLearning Approach	1.	Interactive Instructions using ICT tools			
rippi ouch	2. Hands on Training				
		×			
	MODE OF ASSESSMENT				
		Continuous Comprehensive A	ssessment (CCA)		
		Practical sessions or exams may be organ and the CCA should be based on these ha	nised for each module nds on experiences.		
		One of the following Activity should course.	be done during the		
Assessment Types	Α	Textbook Content Preparation: As part submit a document of at least 3 pages reference texts of students or fac document must be considered for CCA.	of CCA student must using a mathematics culties choice. This		
		Components	Mark		

				Distribu	ution
	Teacher Specific Content			20 Ma	rks
		Assignment		5 Mai	:ks
	:	Semester En	d Examinati	on (Written)	
В		Ques	tion Pattern		
	[Ma	ximum Timo N	e 90 Minutes, Iarks 50]	Maximum	
	M - 1-1-	Part A	Part B	Part C	T - 4 - 1
	Module	1 Marks	5 Marks	10 Marks	Totai
	Ι	4	2	1	7
	II	4	2	2	8
	III.AN	SIU 4	2	1	7
	Total no of question s	12	6	4	22
	Number of questions to be answered	IOF IS PON	4	2	16
	Total Marks	10	20	20	50

TEXT BOOK:

1. Lamport, Leslie. *LaTeX: A Document Preparation System*, Addison-Wesley,2nd edition, 1994.

SUGGESTED READINGS:

- 1. Goossens, M., Mittelbach, F. F., Samarin, a. *The LaTeX Companion*, Addison-Wesley, 1993.
- 2. Krishnan, E. LATEX Tutorials: A Primer, Indian TEX Users Group, 2004

Semester 5

CourseCode	Tide of the Commo	T	C li4	Hours/
	Title of the Course	Type of the Course	Credit	Week
M24MT5DSC300	A First Course in Complex Analysis	Discipline Specific Component - DSC A	4	5
M24MT5DSC301	Limits and Convergence	Discipline Specific Component - DSC A	4	4
M24MT5DSE302	Fundamentals of Groups and Rings	Discipline Specific Component - DSC A	4	4
M24MT5DSC303	Differential Equations and Applications	Discipline Specific Component - DSC A	4	4
M24MT5DSE300	Data Analysis Using Python (S)	Discipline Specific Elective - DSE	4	5
M24MT5DSE301	Mathematical Musings Beyond Classroom	Discipline Specific Elective - DSE	4	5
M24MT5DSE302	An Invitation to Fuzzy Mathematics	Discipline Specific Elective - DSE	4	5
M24MT5DSE303	Exploring the Harmony of Automata	Discipline Specific Elective - DSE	4	5
M24MT5SEC300	Operation Research	Foundation Component - SEC	3	3

Discipline Specific Component (DSC A)

A First Course in Complex Analysis

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B Sc M	athematics		
Course Name		A First	Course in	Complex A	nalysis	
Type of Course	E	Disciplin	e Specific	Component	(DSC A)	
Course Code		HIMK -	M24M'	T5DSC300		
Course Level		10		300		
Course Summary	The objective of this course is the introduction of basic concepts of complex analysis through a problem oriented approach. The course is designed for an understanding of elementary contour integrals, which serves as a powerful means to compute definite integrals and analyze the behaviour of complex functions. The Cauchy-Goursat theorem and Cauchy's integral formula which leads to the construction of Taylor series and Laurent series, the power series expansions that capture the intricate behaviour of analytic functions around specific points are analyzed through the course. The concepts of singularities, poles and resides along with their evaluation are introduced. Improper integrals, definite integrals with one or both limits of integration infinite, are being evaluated using the Cauchy's Residue Theorem.					
Semester	5	Credits				4
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week
Pre- requisites,If any	Approach30205Complex numbers and operations, Regions of complex plane, Basic properties of functions of complex variables, Elementary functions of complex variables.					

COURSE	OUTCOMES	(CO)
--------	-----------------	------

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Understand elementary contour integrals, complex plane's domains, singular points, and their classifications including isolated, removable and essential singularities.	U	1,4,5,6
2	Apply Cauchy - Goursat theorem, Cauchy's integral formula, and Cauchy's residue theorem to calculate contour integrals, showcasing expertise in complex integration techniques.	A, An	1,2,3
3	Effectively categorize poles and zeros of analytic functions, demonstrating a clear understanding of their roles in function behaviour and singularities.	An	1,2,3,4,5
4	Construct series expansions for analytic functions using appropriate techniques, demonstrating proficiency in representing complex functions using power series.	С	1,2,4,5,6
5	Evaluate improper integrals using the residue theorem, showcasing the versatility of complex integration methods in solving problems involving improper integrals.	Е	1,2,3,4
*Reme	mber (K), Understand (U), Apply (A), Analyse (A Create (C),Skill (S), Interest (I) and	n), Evaluate Appreciatio	(E), n (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Integration of Complex Functions		
	1.1	Definite integrals of functions	1	
	1.2	Contours and contour integrals, Some examples, Upper bounds for moduli of contour integrals	1	
	1.3	Anti derivatives, Cauchy-Goursat Theorem (statement only), Some consequences of theextension	2	22
	1.4	Simply and multiply connected domains	1	
	1.5	Cauchy's integral formula, An extension of Cauchy's integral formula	2	
	1.6	Liouville's theorem and Fundamental theorem of algebra, Maximum modulus principle.	2	
	1/2-	Problems (Practicum)	1, 2	
	Text 1: Secti	ons: 38 to 41, 43, 44, 46, 48 to 54		
2		Series of Complex Functions		
	2.1	Convergence of sequences and series	1	15
	2.2	Taylor series, Proof of Taylor's Theorem,Examples	4	
	2.3	Laurent Series, Examples	4	-
		Problems (Practicum)	1,4	
	Text 1: Secti	ons: 55 to 60 & 62		1
3		Residues and Poles		4
	3.1	Isolated singular points, residues, Cauchy'sResidue Theorem	1	
	3.2	Three types of isolated singular points,Residues at poles, examples.	1	18

	3	.3	Zeros of analytic functions, Zeros and poles	3	
]	Problems (Practicum)	1, 3	
	Text	1: Section	ns: 68 to 70, 72 to 76		
		Evaluat	tion of Improper Integrals		
4					
	4.1	Evaluation of improper integrals, ExampleImproper integrals from Fourier analysis.Jordan's Lemma (statement only)Definite integrals involving sines and cosines			20
	4.2				
	4.3				
	1	Problem	ns (Practicum)	5	
	Text 1:	Sections:	78 to 81 & 85		
		1	Teacher Specific Contents		
5	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned) This content will be evaluated internally				visit

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Classroom Procedure (Mode of
transaction)

Teaching andLearning Approach	Lecture methods Problem solving Methodologies Activity based Tutorials/ Practical Software based visualisation of concepts					
		MODE OF ASSESSME	NT			
	Α	Continuous Comprehensive Assessment (CCA)				
Assessment		Components	Mark Distribution			
Types		Teacher Specific Content	20 Marks			
		Quiz in any mode	5 Marks			
		Assignment	5 Marks			

В	Semester End Examination (Written)				
5	Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]				
	Module	Part A 2 Marks	Part B 5 Marks	Part C 10 Marks	Total
	PALET	3	2	1	6
	П	3	3	1	7
	Ш	3	2	1	6
	IV	3	2	1	6
	Total no of question s	12	9	4	25
	Number of questions to be answered	10	6	2	18
	Total Marks	20	30	20	70

TEXT BOOK:

1. Brown, James Ward, Ruel V. Churchill. Complex variables and Applications (8thedition). McGraw-Hill, 2009.

SUGGESTED READINGS:

- Saff, E. B., Snider A. D., Fundamentals of Complex Analysis with Applications toEngineering, Science and Mathematics. Pearson, 2002.
- 2. Ponnusamy, S., Herb Silverman. *Complex variables with applications*. SpringerScience & Business Media, 2007.
- 3. Krantz, Steven G. Complex Variables: A physical approach with applications and MATLAB. CRC Press, 2007.
- Kasana, Harvir Singh. Complex variables: theory and applications. PHI LearningPvt. Ltd., 2005.
- 5. Zill, Dennis G., Patrick D. Shanahan. *Complex analysis: A first course withapplications*. Jones & Bartlett Publishers, 2013.
- 6. Choudhary, B. *The elements of complex analysis*. New Age International, 1993.
- 7. Jeffrey, Alan. Complex analysis and applications. CRC Press, 2005.

ADVANCED READINGS:

- Mathews, John, and Russell Howell. *Complex Analysis for Mathematics and Engineering*. Jones & Bartlett Publishers, 2012.
- 2. Cartan, Henri. *Elementary Theory of Analytic functions of one or several Complexvariables.* Courier Corporation, 1995.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Proof of Cauchy Goursat Theorem
- Proof of Extension of Cauchy's Integral Formula
- Proof of Laurent's Theorem
- Finding complex integrals, zeros, poles and residues using online software likeWolfram Alpha
- Proof of Jordan's Lemma
- Presenting reports on the applications of complex integrals in other subjects / areas

Discipline Specific Component (DSC A)

Limits and Convergence

	Mar Athana	asius Co FY	llege (Au YUGP S	itonomous SYLLABU	s), Koth JS	amangalam
Programme	B Sc Mathematics					
Course Name	Limits And Convergence					
Type of Course	Discipline Specific Component (DSC A)					
Course Code	M24MT5DSC301					
Course Level	N A	7 -	- 3	00		
Course Summar y	This course offers a robust foundation in the analysis of sequences, series and the concept of limits of functions and thereby develops a comprehensive understanding of the mathematical structures crucial to calculus. Topics include limits of sequences, monotone sequences, subsequences, proper divergence, Cauchy sequences, and infinite series with a focus on convergence criteria, comparison tests, and special attention to tests like Root and Ratio, Raabe's, Alternating Series, Dirichlet and Abel test. The course also discusses the limit concepts of real functions. By course end, students possess a solid foundation for methematical analysis					
Semester	5	Credits		4		
Course Details	Learning Approac h	Lectur e	Tutoria l	Practicu m	Other s	Total Hours/wee k
Pre- requisites, If any	Fundamental	of real ana	lysis.	0	0	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Analyse various convergence methods f	An	1,2,3
2	Examine the concept of sub sequences and demonstrate proficiency in analysing their properties within mathematical contexts.	An, A	1,2,3
3	Analysis and application of Cauchy sequences in mathematical contexts, demonstrating proficiency in understanding their convergence properties.	An, A	1,2,3
4	Comprehend fundamental concepts of infinite series and apply various tests for establishing their convergence or divergence.	U, A	1,2,3
5	Apply alternative series tests specifically tailored for non-absolute convergence scenarios, demonstrating a nuanced understanding within mathematical contexts.	А	1,2,3
*Reme	mber (K), Understand (U), Apply (A), Analyse (A Create (C),Skill (S), Interest (I) and	n), Evaluate Appreciation	e (E), on (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours	
1	1.1	Sequences and Their Limits	1		
	1.2	Limit Theorems	1	15	
	1.3	Monotone Sequences	1		
	Text 1: Chapter 3 - Sections: 3.1, 3.2 (Theorems 3.2.3 and 3.2.11 – statements only), 3.3 (up to 3.3.3)				
	2.1	Subsequences and the Bolzano- WeierstrassTheorem.	2		

1	-						
	2.2	The Cauchy Criterion	3	15			
2	2.3	Properly Divergent Sequences	4				
	Text 1: statemer	Chapter 3 - Sections: 3.4 (Theorems 3.4.1 nts	1 and 3.4.12	2 –			
	only), 3.5 (up to 3.5.8, Theorem 3.5.8 – statement only) & 3.6.						
	3.1	Infinite Series- n th term test, comparisontest, limit comparison test.	4				
3	3.2	Absolute Convergence, Grouping andrearrangements of series	4				
	3.3	Tests for Absolute Convergence: Limit comparison Test II, The Root and Ratio Test (Concepts and Problems only)	4	15			
	3.4	The Raabe's Test (Concepts and Problemsonly)	4				
	3.5	Test for Nonabsolute Convergence: Alternating Series Test, The Dirichlet andAbel test. (Concepts and Problems only)	5				
	Text 1: 0 9.1.5 - statemen 9.3)	Chapter 3 - Sections: 3.7; Chapter 9 - Sect eent only), 9.2.1 to 9.2.5, 9.2.8 to 9.2.10 & 9 ntsof the theorems and problems only from	ions: 9.1 (T 9.3 (Concep n sections 9	heorem ts, 0.2 and			
4	4.1	Limits of Functions	5				
	4.2	Limit Theorems 5		15			
	4.3	Some Extensions of the Limit Concept	5				
	Text 1: 0 only), 4. (Concep	Text 1: Chapter 4 - Sections: 4.1 (Theorems 4.1.6 and 4.1.9 – statements only), 4.2 (Theorems 4.2.4 and 4.2.9 – statements only), 4.3 (Concepts, statements of the theorems and problems only)					
		Teacher Specific Contents					
5	(This	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)					
		This content will be evaluated internally					
Teaching and	Classroom Procedure (Mode of transaction)						
---------------------	---	---	----------------	----------------------	--------------------	-------	--
Approach		Lecture	e, Tutorial a	nd Activity of	oriented		
		MC	DDE OF AS	SESSMENT	1		
	Α	Contin	uous Comp (orehensive A CCA)	ssessment		
		Со	omponents		Mark Distributi	on	
		Teacher	Specific Cor	itent	20 M	larks	
		Quiz	in any mod	e	5 M	arks	
		As	5 Marks				
	В	B Semester End Examination (Written)					
Assessment Types	5	Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]					
		Module	Part A	Part B	Part C	Total	
			2 Marks	5 Marks	10 Marks	Total	
		I	3	2	1	6	
			3	3	1	7	
	1	III	3	2	1	6	
		IV	3	2	1	6	
		Total no of questions	12	9	4	25	
		Number of questions to be answered	10	6	2	18	
		Total Marks	20	30	20	70	

TEXT BOOK:

1. Robert G Bartle., Donald R Sherbert. Introduction to Real Analysis(4thEdition),Wiley Internationals, 2000

SUGGESTED READINGS:

- 1. Denlinger, Charles. *Elements of real analysis*. Jones & Bartlett Learning, 2011.
- 2. Howie, John M. Real analysis. Springer Science & Business Media, 2006.
- 3. Abbott, Stephen. Understanding analysis. springer publication, 2015.
- **4.** Ghorpade, Sudhir R., Balmohan Vishnu Limaye. *A course in calculus and realanalysis*. New York: Springer, 2006.
- **5.** Kumar, Ajit, Kumaresan, S. *A basic course in real analysis*. CRC press, 2014.

ADVANCED READINGS:

- 1. Gelbaum, Bernard R., and John MH Olmsted. *Counterexamples in analysis*. CourierCorporation, 2003.
- 2. Rudin, Walter. *Principles of mathematical analysis*. Vol. 3. New York: McGraw-hill, 1976.
- 3. Apostol, Tom M. Mathematical analysis. 1974.
- 4. Royden, Halsey Lawrence, and Patrick Fitzpatrick. *Real analysis*. Vol. 2. New York:Macmillan, 1968.

The

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- The $K(\mathbf{f})$ Game.
- Corollary 3.5.10 and approximate solutions of equations.
- Calculation of Square roots.
- Euler Number.
- Fibonacci fractions and golden ratio.
- The integral test.
- Proof of theorems 3.2.3 and 3.2.11.
- Proof of theorems 3.4.11, 3.4.12 and 3.5.8.
- Proof of theorem 9.1.5, proof of all theorems of Section 9.2 and Section 9.3.
- Proof of theorems 4.1.6, 4.1.9, 4.2.4 and 4.2.9.
- Proof of all theorems of Section 4.3.

Discipline Specific Component (DSC A) Fundamentals of Groups and Rings

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme			B Sc Ma	thematics			
Course Name		Fund	amentals	of Groups a	nd Rings	8	
Type of Course	JE	Discipli	ine Specifi	c Componei	nt (DSC .	A)	
Course Code		1 -	M24MT	5DSE302			
Course Level	171		3	00			
Course Summar y	The objective a beginner. The basic alg permutations, arecovered in Rings and Fie	The objective of the course is to introduce group and ring theory for a beginner. The basic algebraic structure group, its subgroups, cyclic groups, permutations, cosets, homomorphisms, and normal subgroups arecovered in the first three modules. Rings and Fields are introduced in the fourth module.					
Semester	5	Credits				4	
Course Details	Learning Approac	Lectur e	Tutoria l	Practicu m	Other s	Total Hours/wee k	
Pre- requisites	n I	4	0	0	0	4	
If any	Basic Set The	Basic Set Theory and Mathematical Operations					

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Comprehend binary operations, isomorphicstructures, groups, and subgroups.	U	1,2,3
2	Analyse cyclic groups and permutation groups and apply these concepts to solve problems in group theory.	А	1,2
3	Use cosets to prove Lagrange's theorem, analyse homomorphisms, and understand Cayley's Theorem.	А	1,3,5,
4	Analyse rings, fields, and integral domains, and thus become adept in algebraic structures.	A	1,2,6
5	Apply the ideas of Groups and Permutation in Practical Situations.	А	1,3,4,5,6
*Reme	mber (K), Understand (U), Apply (A), Analyse (A Create (C), Skill (S), Interest (I) and	n), Evaluate Appreciatio	(E), on (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours:	
	1.1	Binary Operations – Definitions and Examples	1		
	1.2	Groups – Definition, Examples	1		
1	1.3	Groups - Elementary Properties	1	15	
	1.4	Group Isomorphism, Group Tables and Examples of Abelian Groups	1		
	Text 1: Chapter 1 – Sections: 1.1 to 1.30; Chapter 2 – Sections: 2.1 to 2.23; Chapter 3 – Sections: 3.1 to 3.5				
	2.1	Examples of non-abelian groups and PermutationGroup	2		

	2.2	Symmetric Groups and Disjoint Cycles	2					
2	2.3	Subgroups, Cyclic Groups and Cyclic Subgroups	2	15				
	Text 1: 5.26; Chapte	Text 1: Chapter 4 – Sections: 4.1 to 4.16; Chapter 5 – Sections: 5.1 to 5.26; Chapter 6 – Sections: 6.1 to 6.21						
	3.1	Generating Sets	3					
	3.2	Group Homomorphism and Group of Permutation	3, 5	15				
3	3.3	Kernel, Cayley's Theorem, Even and Odd Permutation	3, 5	- 15				
	3.4	Cosets and Theorem of Lagrange	3					
	Text 1: Chapter 7 – Sections: 7.1 to 7.6; Chapter 8 – Sections: 8.1 to 8.25; Chapter 10 – Sections: 10.1 to 10.20							
	4.1	Rings and Fields	4					
	4.2	Integral Domain, Characteristic of a Ring.	4	15				
4	4.3	Field of Quotients of an Integral Domain(Statement only)	4	10				
	Text 1: Chapter 22 – Sections: 22.1 to 22.18; Chapter 23 – Sections: 23.1 to 23.14; Chapter 26 Examples: 26.1 & 26.6 (Theorem 26.6-Statement only)							
		Teacher Specific Contents		v /				
5	(This co	an be either classroom teaching, practical session,	field visit					
	etc. ass	pecified by the teacher concerned) This content will be evaluated interm	مالع					
		This content win be evaluated intern	any					

Teaching	Classroom Procedure (Mode of transaction)					
Approach		Lectures, Tutorials, Interactive Sessions, Blended Learning				
	MODE OF ASSESSMENT					
	Α	Continuous Comprehensive Assessment (CCA)				
		Components	Mark			

					Distributi	on
		Teacher S	pecific Conte	ent	20 Marks	
		Quiz in	Quiz in any mode			
		Ass	ignment		5 M	arks
	В	Seme	ester End Ex	xamination	(Written)	
			Question	n Pattern		
Assessment Types		[Maximum	n Time 2 Ho 7	ours, Maxin 0]	num Marks	
			Part A	Part B	Part C	
		Module	2 Marks	5 Marks	10 Marks	Total
		I	3	2	1	6
	1	II	3	3	1	7
	12	III	3	2	1	6
	11	IV	3	2	1	6
		Total no of questions	12	9	4	25
		Number of questions to be answered	10	6	2	18
		Total Marks	20	30	20	70

TEXT BOOKS:

- Fraleigh, John B.;. Brand, Neal E, A First Course in Abstract Algebra 8th ed, PearsonEducation 2021
- 2. Gallian, Joseph A. *Contemporary Abstract Algebra*, 10th edition, Cengage, 2021.

SUGGESTED READINGS:

- 1. Dummit, David S., and Richard M. Foote. *Abstract Algebra. 3rd ed.* Wiley, 2003.
- 2. Artin, M. Algebra. 2nd ed., Pearson Education 2017
- 3. Herstein, I. N. Topics in Algebra, 2nd Edition, John Wiley and sons, 2010
- 4. Musili, C. Rings and Modules 2nd revised Edition, Narosa 1997

ADVANCED READINGS:

- 1. Hungerford, Thomas.W., Algebra, 4th Print 2003 Edition.
- 2. Lang, Serge, Algebra, 4th Print 2005 Edition

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Realisation of the group D4 as symmetries of a square. (Chapter 1 of Text 2)
- Rotations of a Regular Tetrahedron and Application in Chemistry (Chapter 5 –Example 10 of Text 2)
- Group Theory Puzzle Rubik's Cube (Chapter 5 of Text 2)

Discipline Specific Component (DSC A) Differential Equations and Applications

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B Sc Ma	thematics		
Course Name		Differenti	al Equation	ons and Ap	plication	S
Type of Course	1-	Discipline Specific Component (DSC A)				
Course Code		M24MT5DSC303				
Course Level	M		3	00		
Course Summar y	The course equations, some practi	covers b various m cal applica	asics of ethods for ations.	ordinary and solving th	d partial em and	differential also include
Semester	5	Credits				4
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k
	h	4	0	0	0	4
Pre- requisites, If any	Basic knowle Basic unders equations, in Knowledge i Basic unders	Basic knowledge of functions, differentiation and integration. Basic understanding of ordinary and partial differential equations, including degree and order. Knowledge in constructing ordinary differential equations. Basic understanding of the concept of solutions.				

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
--------	--------------------------------	---------------------	---------

	Upon the successful completion of the course, thestudent will be able to						
1	Develop the idea of solving first orderDifferential Equations	А	1,2,3				
2	Apply first order Differential Equations to practical situations and solve	A, An	1,4,5,6				
3	Solve higher order Differential Equations	А	1,2,3				
4	Develop the concept of Partial Differential Equations and solve	U, A	1,2,6				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),							

Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours		
	1.1	Exact Differential Equations and IntegratingFactors	1			
	1. 2	Separable Equations and EquationsReducible to this form	1	1		
1	1.3	Linear Equations	1	5		
	1.4	Bernoulli Equations	1			
	Text 1: 0 2.3 2.1	Chapter 2 – Sections: 2.1 (Theorem 2.1 state Finding Integrating Factors	ment only)	, 2.2 &		
	2.2	A Special Transformation	1	10		
2	2.3	Orthogonal Trajectories	2	10		
	2.4	Geometric Applications	2			
	Text 1: Chapter 2 – Sections: 2.4 A & 2.4 B; Chapter 3 – section: 3.1 A,					
	Text 2: C	Chapter 12 - section 12.2				
	3. 1	Definition and Basic Existence Theorem	3			

	3.2	The Homogeneous Equation	3						
	3.3	Reduction of Order	3						
3	3.4	The Non-Homogeneous Equation	3	2 5					
	3.5	The Homogeneous Linear Equation withConstant Coefficients	3						
	3.6	The Method of Undetermined Coefficients	3						
	3.7	Variation of Parameters	3						
	Text 1: Chapter 4 – Sections: 4.1 A, 4.1 B, 4.1 C, 4.1 D, 4.2, 4.3, 4.4								
	4.1	Methods of solution of $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$	4						
4	4.2	Partial Differential Equations, Origin of First Order Partial Differential Equations	4	1 0					
	4.3	Linear Equations of First Order PartialDifferential Equations	4						
	Text 3: Chapter 1 – Section: 3; Chapter 2 - sections-1,2,4 (Theorem 2 & 3 statement only)								
		Teacher Specific Contents							
5	(This can	be either classroom teaching, practical session	ı, field visit						
	etc. assp	ecified by the teacher concerned)	nallv						
		This content will be evaluated inter-	nany						

Teaching andLearning		Classroom Procedure (Mode of transaction)				
Approach	Dire	ect Instruction: Explicit Teaching, Lecture.				
	Inter	active Instruction: Active Co-operative Lea	rning, Group			
	Assi	gnments				
		MODE OF ASSESSMENT				
	A	Continuous Comprehensive Assessment (CCA)				
		Components	Mark Distribution			
		Teacher Specific Content	20 Marks			
		Seminar	5 Marks			
	Assignment 5					
	В	Semester End Examination (Written)				
		Question Pattern [Time 2 Hours, N	/Iaximum Marks 70]			

Assessment	Modulo	Part A	Part B	Part C	Total
Types	Module	2 Marks	5 Marks	10 Marks	Totai
	Ι	3	2	1	6
	II	3	3	1	7
	III	3	2	1	6
	IV	3	2	1	6
	Total No of Questions	12	9	4	25
	Number of Questions to be Answered	10	6	2	18
	Total Marks	20	30	20	70

TEXT BOOK:

- 1. Ross, Shepley L. Differential Equations. 3rd ed. Wiley. 2013.
- Grewal, B. S.. Higher Engineering Mathematics. 42nd ed. KhannaPublications. 2012
- Sneddon, Ian N.. Elements of Partial Differential Equations. 1st ed.McGraw-Hill. 1957

SUGGESTED READINGS:

 Simmons, George F., Steven G Krantz.. Differential Equations -Theory, Technique, and Practice. 1st ed. McGraw-Hill (Walter Rudin Student Series). 2007
 Amaranath, T.. An Elementary Course in Partial DifferentialEquations, 2nd ed. Jones

and Bartlett. 2009

ADVANCED **READING**:

 Simmons, George F.. Differential Equations with Applications and Historical Notes. 3rd ed. CRC Press, Taylor & Francis. 2016

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Applications of Ordinary Differential Equations of First Order inSimpleElectricCircuits
- Rate of Decay of Radioactive Materials

Chemical Reactions and Solutions
 (Text 2: Chapter 12-Section 12.5, 12.8, 12.9)

Discipline Specific Elective – DSE

Discipline Specific Component (DSC A)

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme		B Sc Mathematics				
Course Name		Data	a Analysis ı	ising Python		
Type of Course		Discipline Specific Component (DSC A)				
Course Code		M24MT5DSE300				
Course Level	The second se		3	00		
Course Summary	This course understand i identify vari regarding ho different pa implementati Python is also	This course is intended to perform statistical analysis on data to understand its behavior. It provides a strong foundation on how to identify various distributions. This course also provide information regarding how to identify various statistical tests and to implement different parametric and non-parametric tests. Identification and implementation of different types of ANOVA and correlation analysis in Python is also provided in this course.				
Semester	5	Credits				4
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week
Pre- requisites,If any	Basic Knowled	3 dge in Pytho	0 on	2	0	5

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		

1	Understand various probability distributions	U	1,5,6		
2	Understand, apply and analyze various parametric tests	U, A, An	1,2,3,4		
3	Understand, apply and analyze various non-parametric tests	U, A, An	1,2,3,5		
4	Understand, apply and analyze ANOVA and Correlation	U, A, An	1,2,5,6		
5	Apply, Analyze and Evaluate various statistical tests based on case studies	A, An, E	1,2,3,5		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours			
	1.1	Introduction to probability distributions	1				
	1.2	1					
1	1.3	Parametric tests Vs. Non-parametric tests	1	15			
		Problems (Practicum)	1				
	Text 1: Chapter 7						
	2.1	Introduction – Different types of parametric tests	2,5				
	2.2	Z-test – One sample Z-test, Two-sample Z-test	2,5				
2	2.3	Student's t-test- One Sample Student's t-test, Independent Two-Sample Student's t-test, Paired Student's t-test	2,5	20			
	2.4	F-test	2,5				
		Problems (Practicum)	2,5				
	Text 1	: Chapter 8					

3	3.1	Introduction – Different types of non-parametric tests	3,5	
	3.2	Fisher's Exact test	3,5	20
	3.3	Pearson's Chi-square test, Goodness of Fit	3,5	
	3.4	One sample Wilcoxon- Signed Rank test, Two sample Wilcoxon signed rank test – paired, Two sample Wilcoxon ranksum test - unpaired (Mann-Whitney test),	3,5	
	3.5	Kolmogrov Smirnov test	3,5	
	3.6	K-samples test - Kruskal-Wallis H test.	3,5	
		Problems (Practicum)		
	Text 1	: Chapter 9		
	4.1	Introduction to ANOVA, Types of ANOVA	4,5	
	4.2	One-way ANOVA, Two-way ANOVA, Repeated measures ANOVA.	4,5	
	4.3	Introduction to correlation, Types of correlation	4,5	
4	4.4	Parametric correlation – Pearson correlation	4,5	20
	4.5	Non-parametric correlation – Kendall correlation, Spearman correlation.	4,5	
		Problems (Practicum)		
	Text 1	: Chapter 10		
		Teacher Specific Contents		
5	(T)	his can be either classroom teachi <mark>ng, p</mark> ractical session, fie specified by the teacher concerned)	ld visit etc. d	15
		This content will be evaluated internally		

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning	Classroom Procedure (Mode of transaction)							
Approach	Lecti	ure, Seminar, Grou	ip Assignme Wor	ent, Interactiv k	ve Assignmen	t, Lab		
		M	ODE OF AS	SESSMENT				
	Α	Continu	ous Compre	hensive As <mark>s</mark> e	ssment (CCA))		
		Co	omponents		Mark Distr	ibution		
		Teacher	Specific Cont	ent	20 Marks			
		Quiz in any mode			5 Marks			
		As	5 Marks					
	В	B Semester End Examination (Written)						
		Question Pattern						
Assessment		[Maximum Time 2 Hours, Maximum Marks 70]						
Types		Module	Part A	Part B	Part C	Total		
			2 Marks	5 Marks	10 Marks			
		Ι	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
		Total no of questions	12	9	4	25		

Number of questions to be answered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOK:

1. Jeeva Jose, Data Analysis and Visualization using Python, Khanna Publishers, New Delhi, 2024.

SUGGESTED READINGS:

- 10. John Shovic, Alan Simpson, Python All-in-One for Dummies, Wiley, 2020
- 11. Thomas Haslwanter, An Introduction to Statistics with Python, 2015

WEB RESOURCES:

- <u>https://dataalltheway.com/posts/010-02-parametric-hypothesis-tests-python/index.html</u>
- <u>https://machinelearningmastery.com/parametric-statistical-significance-tests-in-python/</u>
- https://machinelearningmastery.com/nonparametric-statistical-significance-tests-in-python/
- <u>https://www.analyticsvidhya.com/blog/2024/04/one-way-and-two-way-analysis-of-variance-anova/</u>

Discipline Specific Elective – DSE

Mathematical Musings beyond Classroom

	N	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS				
Programme			B.Sc. N	Iathematics		
Course Name		Mathematical Musings beyond Classroom				
Type of Course		Discipline Specific Elective – DSE				
Course Code	1-	M24MT5DSE301				
Course Level	S		-	300		
Course Summar y	Step beyo transforms infinite po mathematic	nd the c from a r ssibilities cs.	onfines o nere subje and allow	f classrooms ct into a ga ing you to 1	s, where teway, le revel in	e mathematics eading you to the beauty of
Semester	5	Credits		2		4
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k
Pre- requisites, If any	n Nil	3	0	2	0	5

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Acquire a solid understanding of fundamental mathematical concepts including algebra, geometry, calculus, and probability.	K	1,2,3

2	Understand the evolution of mathematical thought and its role in shaping scientific and technologicaladvancements.	U	1,2,3,4	
3	Develop the ability to apply mathematical principles to solve real-world problems.	А	1,2	
4	Discuss ethical considerations in mathematical research and applications. Encourage students to critically reflect on their own learning and understanding of mathematical concepts.	Е	4,6,8,9	
5	Demonstrate how mathematics intersects with various disciplines, including science, arts, and humanities.	С	3,10	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),				

Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom Transaction (Units)

Module	Units	Course Description	CO No:	Hours
1		Exploring Enchanting Texts		
	1.1	An Introduction to Exploring Enchanting Texts of Mathematics.	1	
	1.2	Text Book 1 Chapter- 1: Nothing Doing [The Origin of Zero], Chapter- 3: Nothing Ventured [Zero Goes East]	2,5	20
	1.3	Text Book 2 Part Five: Data (Chapter- 22: The New Normal, Chapter- 23: Chances Are, Chapter- 24: Untangling the Web)	1, 2,3,5	
	1.4	Text Book 3 Chapter- 3: Einstein vs. Dostoyevsky	2, 4	
		Practicum (Problem)	1,2,3,4, 5	
	Text 1, T	ext 2, and Text 3		

2		Math Meets the Silver Screen		
	2.1	Introduction to Mathematics on the SilverScreen.	1	15
	2.2	The film <i>A Beautiful Mind</i> (2001) directed byRon Howard.	3,4	
	2.3	The film <i>The Imitation Game</i> (2014) directedby Morten Tyldum.	2,3	
	2.4	The film <i>The Man Who Knew Infinity</i> (2015)directed by Matthew Brown.	2,3,4	
	2.5	The film <i>Hidden Figures</i> (2016) directed by Theodore Melfi	2,4,5	
		Practicum (Problem)	1, 2,3,4,5	
		Mathematical Prelude: Kerala's Historical Journey		
	3.1	The Actors, The Social Background.	1,2	
	3.2	The Motivation and Method, The Madhava- Gregory Series for the Inverse Tangent, The Madhava Newton Power Series for the	2	
	3.3	Sine and Cosine.		20
3		Transmission of Kerala Mathematics: Establishing Transmissions: A Digression. The Case for Transmission:	2	
		Applying the Neugebauer Criteria.		
	3.4	The Case for Transmission: Applying the Legal Standard of Motivation and Opportunity, A Conjecture on the Mode	2,4	
		of Acquisition of Manuscripts by the Jesuits.		
	Text 4: C	hapter- 10: A Passage to Infinity: The Kerala	Episode.	
		Unveiling the Philosophy of Mathematics		
	4.1	Text Book 5 Part One, Chapter- 5: Five Classical Puzzles.	2	
4	4.2	Text Book 6 Chapter- 1: Mathematics and Its Philosophy(Sections 1, 1, 8, 1, 2)	2,4	20
	4.3	Text Book 6 Chapter- 2: The Limits of Mathematics.	2,4	

	Text 5 and Text 6
	Teacher Specific Contents
5	(This can be either classroom teaching, practical session, field visitetc. as specified by the teacher concerned)
	This content will be evaluated internally

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)							
Approach		Direct Instruction, Brain Storming Approach, Interactive Instruction, Watching Movies, Group Discussion, and Presentation by IndividualStudent/ Group Representatives.						
		M	ODE OF ASS	SESSMENT	r			
	Α	Continuo	us Comprehe	ensive Asse	ssment (CCA	A)		
	1	C	omponents	5/	Mark Distributi	on		
		Teacher	20 M	arks				
		Quiz	5 Marks					
		A	5 Marks					
	B	Semester End Examination (Written)						
		Question Pattern						
		[Maximum Time 2 Hours, Maximum Marks 70]						
Aggaggmant		Module	Part A	Part B	Part C	Total		
Types			2 Marks	5 Marks	10 Marks	Total		
		Ι	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
		Total no of questions	12	9	4	25		
		Number of		-	-			
		questions to	10	6	2	18		
		be answered						

	Total Marks	20	30	20	70
--	-------------	----	----	----	----

TEXT BOOKS:

- 1. Seife, Charles. *Zero: The Biography of a Dangerous Idea*. United States, Penguin Publishing Group, 2000.
- 2. Strogatz, Steven Henry. *The Joy of X: A Guided Tour of Math, from One to Infinity*.United States, Houghton Mifflin Harcourt, 2012.
- 3. Hoffman, Paul. *The Man Who Loved Only Numbers: The Story of Paul Erdos and theSearch for Mathematical Truth.* London, Fourth Estate, 1999.
- 4. George Gheverghese Joseph. *The Crest of the Peacock Non-European Roots of Mathematics* (3rd Edition). Princeton University Press, Princeton & Oxford, 2011.
- 5. Hersh, Reuben. *What is Mathematics, Really?*. United Kingdom, Oxford University Press, 1997.
- 6. Colyvan, Mark. An Introduction to the Philosophy of Mathematics. United Kingdom, Cambridge University Press, 2012.

SUGGESTED READINGS:

- 1. Singh, Simon. *Fermat's Last Theorem*. United Kingdom, Harper Collins Publishers, 2012.
- 2. Oakley, Barbara A. A Mind for Numbers: How to Excel at Math and Science (Even IfYou Flunked Algebra). United Kingdom, Penguin Publishing Group, 2014.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Reading of the related books:
- Nasar, Sylvia. A Beautiful Mind. United Kingdom, Faber & Faber, 2012.
- Hodges, Andrew, and Hofstadter, Douglas. *Alan Turing: The Enigma: The Book That Inspired the Film The Imitation Game* -Updated Edition. United Kingdom, Princeton University Press, 2014.
- Kanigel, Robert. *The Man Who Knew Infinity: A Life of the Genius Ramanujan*. India, Washington Square Press, 2016.
- Shetterly, Margot Lee. Hidden Figures. United States, Harper Collins, 2018.
- Visit a place of mathematical importance.
- Book Reviews/Film Reviews/Group Discussions/Debates.

Discipline Specific Elective – DSE

An Invitation to Fuzzy Mathematics

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme			B.Sc. M	athematics			
Course Name		An In	vitation to	Fuzzy Math	nematics		
Type of Course		Discipline Specific Elective – DSE					
Course Code	M24MT5DSE302						
Course Level	300						
Course Summary	This course provides a warm introduction to Fuzzy Mathematics, highlighting its significance and showcasing the academic accomplishments of our undergraduate participants. It also offers an overview of the course by having students present the foundational principles and key theories covered, emphasizing their understanding and application.						
Semester	5	Credits		>		4	
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week	
Pre- requisites,If	Approach Text 3	3	0	2	0	5	
Course Details Pre- requisites,If any	Learning Approach Text 3	Lecture 3	Tutorial 0	Practicum 2	Others 0	Hours/	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Comprehensive understanding of fuzzy set theory	U	1,2,3,4
2	To acquire proficiency in performing operations onfuzzy sets and fuzzy relations.	А	1,2
3	To develop the skills to use fuzzy tools and techniques in various fields such as graphs.	S	1,4,5,6

4	To handle the real-life situations using Fuzzy Graphs	Ι	1,2,4,5				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
	1.1	Crisp Sets: An over view	1	
	1.2Fuzzy Sets: Basic Types & Concepts		1	
1	1.3	c) Alpha Cuts	1	20
	1.4	d) Additional properties of Alpha cuts, Representation of Fuzzy Sets & Extension Principle for fuzzy sets	1	
		Practicum (Problem)	1	
	Text 1: C	hapter 1- Sections: 1.1 to 1.4; Chapter 2- Sec	ctions: 2.1 to	2.3
	2.1	Types of Operations	2	
2	2.2	Fuzzy Compliments	2	20
2	2.3	Fuzzy intersection : t -norm	2	
	2.4	Fuzzy union : t co-norm	2	
		Practicum (Problem)	2	
	Text 1: C	hapter 3- Sections: 3.1 to 3.4	<u> </u>	<u> </u>
	3.1	Crisp versus Fuzzy Relations	3	
	3.2	3.2 Binary Fuzzy Relations		20
3	3.3	Binary Relation on a single set	3	20
	3.4	Fuzzy Equivalence Relations& CompatibilityRelations	3	

		Practicum (Problem)	3				
	Text 1: 0	Chapter 5- Sections: 5.1, 5.3 to 5.6					
	4.1	Graph theory Revisited: Definition, Subgraph, connectivity, cut vertex, cut edge.	4				
4	4.2	Fuzzy graph with Example	4	15			
	4.3	4.3 Different types of Fuzzy Graphs withExamples					
	4.4	Connectivity in Fuzzy Graphs, Fuzzy Bridgeand Fuzzy Cut vertex with examples	4				
	4.5	Complete Fuzzy Graphs with examples	4				
		Practicum (Problem)	4				
	Text 2: 0	Chapter 2- Sections: 2.1, 2.2, 2.2.1(proof is inc	luded)				
5	(This car etc. assp	Teacher Specific Contents to be either classroom teaching, practical session ecified by the teacher concerned)	, field visit				
		This content will be evaluated internally					

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching		Classroom Procedure (Mode of transaction)			
Approach	Ι	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion			
		MODE OF ASSESSMENT			
	A Continuous Comprehensive Assessment (CCA)				
	Components Mark				

					Distribu	tion
		Teacher Specific Content			20 Marks	
		Qui	z in any mod	le	5 Marks	
		I	Assignment		5 N	/larks
	B	5	Semester End	l Examinatio	n (Written)	
			Quest	ion Pattern		
Assessment Types		[Maxin	num Time 2	Hours, Maxir 70]	num Marks	
		Madula	Part A	Part B	Part C	Total
		Module	2 Marks	5 Marks	10 Marks	Total
		Ι	3	2	1	6
	1	П	3	3	1	7
	1	ILLHAN	3	2	1	6
		IV	3	2	1	6
		Total no of questions	12	9	4	25
		Number of questions to be answered	10 10E 15 POM	6	2	18
	11	Total Marks	20	30	20	70

TEXT BOOKS:

- 1. Klir, George J., Yuan, Bo. *Fuzzy Sets and Fuzzy Logic Theory and Applications*, Pearson India Education services Pvt Ltd, 2015.
- 2. Sunil Mathew., John N Modeson., Davendar S Malik. *Fuzzy Graph Theory*.Springer,2018.
- Wilson, Robin J; Introduction to Graph Theory 5th ed, Pearson Education Limited ,2010

SUGGESTED READINGS:

- 1. Hans-Jürgen Zimmermann. Fuzzy Set Theory and Its Applications.
- 2. Didier Dubois., Henri Prade. Fuzzy Sets and Systems: Theory and Applications.
- 3. John N. Mordeson, Davender S. Malik. Fuzzy Graphs: Theory and applications.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Theorems 2.8, 2.9, & 2.10
- Lemma 3.1-3.2, Theorem 3.3-3.8, Theorem 3.11-3.13. Theorem 3.16-3.18.
- Problem solving using the methods discussed in the Module 3.

Discipline Specific Elective – DSE

Exploring the Harmony of Automata

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B.Sc. M	Iathematics		
Course Name	Exploring t	he Harmo	ony of Aut	omata		
Type of Course	Discipline S	pecific El	ective – D	SE		
Course Code	-	M24MT5DSE303				
Course Level	(Juli	SHANA	I SCO	300		
Course Summary	The principles acquired in Automata Theory lay a robust groundwork, imparting the skills to effectively address real-life challenges by cultivating the ability to formulate mathematical models for problem- solving. Additionally, this knowledge serves as a springboard for advanced studies in theoretical computer science, algorithm design, and related disciplines.					
Semester	5	Credits				4
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week
Pre- requisites,If	Approach Set Theory	3	0	2	0	5

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, the student will be able to		1
1	To Provide Basic Grounding in Discrete Mathematics.	U	1,2
2	To Connect Regular Expression, languages andAutomata.	А	1,2
3	To develop the skills to categorise the differenttypes of mathematical models of computation.	S	1,5,6

4	To handle real-life problems and develop the skill of solving problems through the application of mathematical models and algorithms.	Ι	1,4,5,6	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
1	1.1	Automata, Computability and Complexity.	1	
	1.2	Mathematical Notations and Terminology- Sets, Sequences and Tuples	1	15
	1.3	e) Relations, Functions and Graphs.	1]
	1.4	f) Strings, Languages, Boolean Logic.	1	
		Practicum (Problem)	1	
	Text 1: Sect	tions: 0-0.1 & 0.2.		1
	2.1	Regular Languages: Finite Automata	2	
	2.2	Non-Determinism	2	20
2	2.3	Regular Expressions	2	
	2.4	Non-Regular Languages	2	
		Practicum (Problem)	2	
	Text 1: Sect	tions: 1.1 to 1.4		
	3.1	Context Free Languages: Context FreeGrammars	3	
3	3.2	Pushdown Automata	3	20
	3.3	Non-Context free Languages	3	

		Practicum (Problem)	3	
	Text 1: Se	ctions: 2.1 to 2.3	L	
	4.1	Church Turing Thesis: Turing Machine	4	
	4.2	Variants Of Turing Machine	4	20
4	4.3	Enumerators	4	
	4.4	Equivalence with Other Models	4	
		Practicum (Problem)	4	
	Text 1: Se	ctions: 3.1 & 3.2	1	

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching andLearning	Classroom Procedure (Mode of transaction)			
Approach	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion			
	MODE OF ASSESSMENT A Continuous Comprehensive Assessment (CCA)			
		Components	Mark Distribution	
		Teacher Specific Content	20 Marks	
		Quiz in any mode	5 Marks	
		Assignment	5 Marks	
	B	Semester End Examination	n (Written)	

Assessment	Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]						
Types	Modulo	Part A	Part B	Part C	Total		
	Module	2 Marks	5 Marks	10 Marks	Total		
	Ι	3	2	1	6		
	II	3	3	1	7		
	III	3	2	1	6		
	IV	3	2	1	6		
	Total no of questions	12	9	4	25		
<	Number of questions to be answered	10	6	2	18		
	Total Marks	20	30	20	70		

TEXT BOOKS:

1. Michael Sipser.. *Introduction to the Theory of Computation*. Thomson PublishingCo,3rd Edition, 2012.

SUGGESTED READINGS:

- 1. Hop Croft, J.E., Motwani, R., Ullman, J. D. *Introduction to Automata Theory, Languages and Computation*, 3rd Edition Pearson, 2008.
- 2. Lewis, H. R., Papadimitriou, C. H. *Elements of the Theory of Computation*. 2ndEdition, Prentice Hall, 1998.
- 3. Kozen, C., Automata and Computability, Springer-Verlag, 1997

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Problem discussions of the concepts in module 1, 2 and 3
- Discussion of real life problems related to the topics in module 4

Discipline Specific Elective – DSE

Operations Research

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B.Sc. Ma	thematics		
Course Name			Operation	s Research		
Type of Course		Discipline Specific Elective – DSE				
Course Code	T	M24MT5SEC300				
Course Level	S VIII		2	00		
Course Summar y	The objectiv students with Problems, The applications	The objective of this course is to familiarize industrial problems to students with various methods of solving Linear Programming Problems, Transportation Problems, Assignment Problems and their applications				
Semester	5	Credits	E IS PON			4
Course Details	Learning Approac	Lectur e	Tutoria l	Practicu m	Other s	Total Hours/wee k
	h	3	0	2	0	5
Pre- requisites, If any	Basic Algebra					·

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Express objective function and resource constraints in LP model in terms of decision variables and parameters.	U	1,2,3,4
2	Solve an LP problem by the graphical method.	А	1,4,5,6

3	Interpret the optimal solution of LP problems.	А	1,2,3,4,5,6	
4	Formulate the dual LP problem and understand therelationship between primal and dual LP problems.	U	1,5,6	
5	Recognize, formulate, and solve a transportation problem involving a large number of shipping routes.	С	1,2,3,4,5,6	
6	Analyse assignment problem and apply theHungarian method to solve an assignment problem.	С	1,2,3	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO NO:	Hours
1	1.1	Linear Programming: Introduction, Formulation of LPP (Example up to 2.6.10)	1	
	1.2	1.2Graphical Method of Solution (Example up to 2.9.8)		12
	1.3 a) Some Exceptional Cases		2	
	1.4	b) The General LPP, Canonical and StandardForms of LPP	1	
	Text 1: Chapter 2 - Sections: 2.1, 2.6, 2.9 to 2.12			
	2.1	Simplex Method: Theory of Simplex Method,Some Important Definitions	3	
	2.2	The Simplex Method (Example up to 2.16.4)	3	
2	2.3	Artificial Variable Techniques: Big-M Method only (Example up to 2.17.4)	3	18
	2.4	Special Cases in Simplex Method Application	3	
	2.5	Duality in Linear Programming	4	

	Text 1: C	hapter 2 - Sections: 2.13, 2.14, 2.16, 2.17, 2.18.1	to 2.18.	6;
	Chapter (5		
	- Sections	: 6.1.1 to 6.1.3(problems, theorems without pro	of)	
3	3.1	Transportation Problem: Introduction to the Model, Assumptions in the Transportation Model, Definitions of the Transportation Model, Matrix Terminology	5	16
	3.2	Formulation and Solution of TransportationModel	5	
	3.3	Variants in Transportation Problem	5	
	Text 1: C	hapter 3 - Sections: 3.1 to 3.4, 3.5.1,3.5.2, 3.6.1,3	3.6.2	
	4.1	Assignment Problem: Definition of the Assignment Model, Mathematical Representation of Assignment Model, Comparison with the Transportation Model	6	
	4.2	Solution of the Assignment Model	6	
4	4.3	Hungarian Method for Solution of theAssignment Problems	6	14
	4.4	Formulation and Solution of the AssignmentModel	6	
	4.5	Variation of Assignment Problem: Non- squareMatrix and Maximization Problem	6	
	Text 1: C	hapter 4 - Sections: 4.1 to 4.7		
5	(This can etc. asspec	Teacher Specific Contents be either classroom teaching, practical session, fie cified by the teacher concerned) This content will be evaluated interna	eld visit	

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching andLearning Approach	Classroom Procedure (Mode of transaction)					
	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion					
Assessment Types	MODE OF ASSESSMENT					
	A	Continuous Comprehensive Assessment (CCA)				
		Components			Mark Distribution	
		Teacher Specific Content			20 Marks	
		Quiz in any mode			5 Marks	
	2-	Assignment			5 Marks	
	В	Semester End Examination (Written)				
	Question Pattern [Maximum Time 2 Hours, Maximum Mark 70]					5
		Module	Part A 2 Marks	Part B 5 Marks	Part C 10 Marks	Total
	C	I	3	2	1	6
		П	3	3	1	7
		Ш	3	2	1	6
		IV	3	2	1	6
		Total no of question s	12	9	4	25
		Number of questions to be answered	10	6	2	18
		Total Marks	20	30	20	70

TEXT BOOK:

1. Prem Kumar Gupta., Hira, D.S. *Operations Research – 7th Edition*, S Chand & SonsPublications, 2014.

SUGGESTED READINGS:

- 1. Sharma, J.K. *Operations Research: Theory and Applications –* 6th edition, Macmillian India Ltd-New Delhi Publications
- 2. Frederick S. Hillier., Gerald J Lieberman. *Introduction to Operations Research* – 10thedition. McGraw Hill Publications.
- 3. Taha, Hamdy A. *Operations Research: An Introduction* 8th edition. PearsonEducation Publishers.
- 4. Kanti Swarup., Gupta, P.K., Man Mohan. *Operation Research*. S Chand & SonsPublications
- 5. Aumann R.J. *Mixed and Behaviour strategies in infinite extensive*. PrincetonUniversity.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

• Problem solving using the methods discussed in the module 1, 2 and 3

Semester 6

CourseCode				Hours/
Consecoue	Title of the Course	Type of the Course	Credit	Week
M24MT6DSC300	Mathematical Analysis	Discipline Specific Component - DSC A	4	4
M24MT6DSC301	Fundamentals of Linear Algebra	Discipline Specific Component - DSC A	4	5
M24MT6DSC302	Application of Calculus and Linear Algebra in Finance	Discipline Specific Component - DSC A	4	5
M24MT6DSE300	Introduction Machine Learning Using Python (S)	Discipline Specific Elective - DSE	4	5
M24MT6DSE301	Investment Science	Discipline Specific Elective - DSE	4	5
M24MT6DSE302	Combinatorics	Discipline Specific Elective - DSE	4	5
M24MT6DSE303	Fundamentals of Fluid Dynamics	Discipline Specific Elective - DSE	4	5
M24MT6DSE304	Computations and Graphics Using Scilab	Discipline Specific Elective - DSE	4	5
M24MT6SEC300	Numerical Methods	Foundation Component -VAC	3	3
M24MT6VAC300	Mathematical Computation and Visualization with R	Foundation Component -SEC	3	3

Discipline Specific Component (DSC A)

Mathematical Analysis

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B Sc Ma	athematics		
Course Name		Ν	lathemati	cal of Analys	sis	
Type of Course	F	Discipli	ine Specifi	c Componen	t (DSC A	.)
Course Code		A FIN	M24M7	r6DSC3 <mark>0</mark> 0		
Course Level		ton		300		
Course Summary	This real analysis course covers the fundamental concepts, includes continuity, uniform continuity, monotone and inverse functions, derivatives, the mean value theorem, L'Hôspital's Rules and Tayler's theorem. The course also explores the Riemann integral, Riemann integrable functions, and the Fundamental Theorem of Calculus. This curriculum provides students with a solid foundation in calculus and mathematical analysis, essential for advanced mathematical studies.					
Semester	6	Credits				4
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practicum 2	Others 0	Total Hours/week 5
Pre- requisites,If any	Limits and C	onvergenc	e		1	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:		
	Upon the successful completion of the course, thestudent will be able to				
1	Comprehend the concept of continuous functions and demonstrate proficiency in understanding theirproperties.	U, A	1,2,6		
2	Understand uniform continuity, comparing and contrasting it with continuity.	U	1,2		
3	Comprehend the concept of differentiation	U, A	1,2		
4	Develop comprehensive understanding of the MeanValue Theorem, L'Hôpital's Rules and Taylor's theorem.	U, A	1,2,3,6		
5	Understand the principles of Riemann integration, demonstrating proficiency in applying these concepts	An	1,2,3		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours		
	1.1	Continuous Functions	1			
	1.2	Combinations of Continuous Functions	1	15		
1	1.3	Continuous Functions on Intervals	1			
	Text 1: Chapter 5 - Sections: 5.1 (Concepts, statements of the theorems and problems only), 5.2 (Theorems 5.2.4 and 5.2.5 – statements only), 5.3 (Theorems 5.3.4 and 5.3.5 – Statements only)					
	2.1	Uniform Continuity	2			
	2.2	Monotone and Inverse Functions	2	15		

2	Text 1: Chapter 5 - Sections: 5.4 (up to 5.4.8) (Theorems 5.4.2 and 5.4.8 –						
	Statemen	nts only), 5.6 (up to 5.6.5). (Theorems 5.6.4 an	nd 5.6.5 –				
	Statemer	ntsonly)					
	3.1	The Derivative	3				
	3.2	The Mean Value Theorem	4				
	3.3	Intermediate Value Property of Derivatives	4	15			
3	3.4	L'Hospital's Rules	4	10			
	3.5	Taylor's Theorem	4				
	6.3 (Theorer 6.4.1-Sta	ns 6.3.3 and 6.3.5- statements only), 6.4.1 to (tement only)	6.4.3 (The	orem			
	4.1	Riemann Integral	5				
	4.2	Riemann Integrable Functions	5	15			
4	4.3	The Fundamental Theorem	5	15			
	Text 1: Chapter 7 - Sections: 7.1, 7.2 (Theorem 7.2.9 – statement only) & 7.3 (up to 7.3.9)						
	(This	Teacher Specific Contents (This can be either classroom teaching, practical session, field visit					
5		etc. asspecified by the teacher concerned)	- 0				
		This content will be evaluated internally	V				

Teaching andLearning Approach		Classroom Procedure (Mode of tr	ransaction)		
	Lecture, Tutorial and Activity oriented				
	MODE OF ASSESSMENT				
	A Continuous Comprehensive Assessment (CCA)				
		Components	Mark Distribution		
		Teacher Specific Content	20 Marks		
		Quiz in any mode	5 Marks		
		Assignment	5 Marks		

	В	Semester End Examination (Written)				
Assessment Types		[Maximu	Question m Time 2 Ho 7	n Pattern ours, Maxin 0]	num Marks	
		Module	Part A 2 Marks	Part B 5 Marks	Part C 10 Marks	Total
		Ι	3	2	1	6
		II	3	3	1	7
		III	3	2	1	6
		IV	3	2	1	6
		Total no of questions	12	9	4	25
		Number of questions to be answered	10	6	2	18
		Total Marks	20	30	20	70

TEXT BOOK:

1. Bartle, Robert G., Sherbert, Donald R. *Introduction to Real Analysis(4thEdition)*, Wiley Internationals, 2002.

SUGGESTED READINGS:

- 1. Denlinger, Charles. *Elements of real analysis*. Jones & Bartlett Learning, 2011.
- 2. Howie, John M. Real analysis. Springer Science & Business Media, 2006.
- 3. Abbott, Stephen. Understanding analysis. springer publication, 2015.
- 4. Ghorpade, Sudhir R., and Balmohan Vishnu Limaye. *A course in calculus and realanalysis*. New York: Springer, 2006.
- 5. Kumar, Ajit, Kumaresan, S. *A basic course in real analysis*. CRC press, 2014.

ADVANCED READINGS:

- 1. Gelbaum, Bernard R., and John MH Olmsted. *Counterexamples in analysis*. CourierCorporation, 2003.
- 2. Rudin, Walter. *Principles of mathematical analysis*. Vol. 3. New York: McGraw-hill, 1976.

- 3. Apostol, Tom M. Mathematical analysis. 1974.
- 4. Royden, Halsey Lawrence, and Patrick Fitzpatrick. *Real analysis*. Vol. 2. New York:Macmillan, 1968.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Aproximations
- Piecewise linear functions
- Weierstrass aproximation theorem
- Continuity and gauges
- The nth root function
- Rational powers.
- Further applications of the Mean Value Theorem and inequalities.
- Proofs of L'Hospital's Rules
- Point-wise and uniform convergence
- Proof of all theorems of Section 5.1, theorems 5.2.4, 5.2.5, 5.3.4 and 5.3.5.
- Proof of theorems 5.4.2, 5.4.8, 5.6.4 and 5.6.5.
- Proof of theorems 6.3.3 and 6.3.5.
- Proof of theorem 7.2.9.

Discipline Specific Component (DSC A)

Fundamentals of Linear Algebra

Г

Τ

٦

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B Sc Ma	thematics		
Course Name		Fun	damental	s of Linear A	Algebra	
Type of Course	1-	Discipl	ine Specifi	ic Compone	nt (DSC)	A)
Course Code		M24MT6DSC301				
Course Level			3	00		
Course Summar y	Linear Algebra is a fundamental tool in many areas of mathematics, science, engineering, economics, and data science. It also has applications in machine learning, providing the mathematical foundation for many algorithms and techniques. This course on Linear Algebra deals with the basic concepts like vector spaces, linear transformations, determinants, Eigen values and Eigen vectors.					
Semester	6	Credits				4
Course Details	Learning Approac	Lectur e	Tutoria l	Practicu m	Other s	Total Hours/wee k
	h	3	0	2	0	5
Pre- requisites, If any	Algebra of M andconsistenc	atrices, Ga	ussian Eli m of linear	mination Me equations.	ethod, Sol	ution

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:				
	Upon the successful completion of the course, thestudent will be able to						
1	Analyse the basic concepts of vector spaces	An	1,2,3				
2	Illustrate the fundamental properties of lineartransformations	А	2,3				
3	Compute the eigen values and eigen vectors	А	1,3				
4	Deduce the connections between determinants andother linear algebra concepts	An	1,2,3				
5	Apply computational software and tools in linearalgebra computations.	А	2,3				
*Reme	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),						

Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours		
	1.1	Vector Spaces: Definition and examples	1			
	1.2	Subspaces	1			
1	1.3	Linear Combination of Vectors, Spanning Set, Linear Dependence and Independence of Vectors	1	20		
	1.4	Basis of a Vector Space	1			
	1.5	Dimension of a Vector Space	1			
		Problems (Practicum)	1			
	Text 1: Chapter 5					
	2.1	Linear Mappings	2			

Text 1: Chapter 6.					
		Problems (Practicum)	2		
	2.6	Linear Isomorphism	2		
	2.5	Rank and Nullity	2		
2	2.4	Dimension Theorem	2	20	
	2.3	Bijective Linear Mappings	2		
	2.2	Kernel and Range of a Linear Mapping	2		

		A						
3	3.1	Eigen Values and Eigen Vectors	3					
	3.2	Characteristic Polynomial, Characteristic Equation and Algebraic Multiplicity	3	20				
	3.3	Eigen Space and Geometric Multiplicity	3					
	Text 1	1: Chapter 9 (up to and including theorem 9.2)						
4	4.1	Determinantal Mapping	4					
	4.2	Determinant of a Matrix as a DeterminantalMapping	4					
	4.3	Laplace Expansion	4	15				
	4.4	Adjoint and Inverse of a Matrix	4					
		Problems (Practicum)	4					
	Text 1	1: Chapter 8 [Theorems(Statements only) and appli	cations.]					
		Teacher Specific Contents						
5	(7	(This can be either classroom teaching, practical session, field visit						
-		eic. asspecytea by the teacher concernea)						
	This content will be evaluated internally							

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and Learning Approach		Classroom Procedure (Mode of transaction)					
		Lectures, Tuto	rials, Interac Learni	tive Session ng	s, Blended		
		MC	DE OF AS	SESSMENT	- -		
	Α	A Continuous Comprehensive Assessment					
		Components			Mark Distributi	Mark Distribution	
		Teacher	20 Marks				
		Quiz	5 Marks				
		As	5 Marks				
	В	Semester End Examination (Written)					
		Question Pattern					
Assessment Types		[Maximum Time 2 Hours, Maximum Marks 70]					
		Module	Part A	Part B	Part C	Total	
		module	2 Marks	5 Marks	10 Marks	10101	
		Ι	3	2	1	6	
		II	3	3	1	7	

III	3	2	1	6
IV	3	2	1	6
Total no of questions	12	9	4	25
Number of questions to be answered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOK:

1. Blyth, T. S., and E. F. Robertson. *Basic linear algebra*, Second Edition, Springer,2007.

SUGGESTED READINGS:

- 1. Strang, Gilbert. *Introduction to linear algebra (5th ed.)*. Wellesley-Cambridge Press, 2016.
- 2. Lay, D. C. *Linear algebra and its applications* (5th ed.). Pearson Education, 2018.
- 3. Axler, S. Linear algebra Done Right (3rd ed.). Springer, 2015.
- 4. Hoffman, K., & Kunze, R. Linear algebra (2nd ed.). Prentice Hall, 2009.
- Lipschutz, S., Lipson, M. Schaum's outline of theory and problems of linear algebra (4th ed.). McGraw-Hill, 2009.
- 6. Thamban Nair, M., Singh, A. Linear Algebra. Springer, 2018.
- 7. Anton, H. *Elementary linear algebra* (12th ed.). Wiley, 2019.
- 8. Kumaresan, S. Linear Algebra: A Geometric Approach. PHI Learning, 2015.
- 9. Bronston, T. A., Costa, A. C. R. *Linear algebra: An introduction* (4th ed.), AcademicPress, 2013.
- 10. Video lectures of Gilbert Strang hosted by MITOpenCourseWare available at <u>https://ocw.mit.edu/courses/18-06-linear-algebra-spring-</u>2010/video_galleries/video-lectures/

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Proofs of theorems in Module 4
- Use of computational software or tools (like Python, Sagemath etc.) to perform computations in the modules 1 to 4 efficiently

Discipline Specific Component (DSC A)

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme		B.Sc. Mathematics				
Course Name	Appli	Applications of Calculus and Linear Algebra in Finance				
Type of Course	E	Discipline Specific Component (DSC A)				
Course Code	S SUL	M24MT6DSC302				
Course Level	MAN		3	00		
Course Summar y	The goal of t and working in Economi interesting m	his course Knowledg c Analysi odels.	is to give t e of the ap s, via m	the students a pplication of a sophist	a deeper mathema icated,	understanding tical concepts realistic, and
Semester	6	Credits	2	3		4
Course Details	Learning Approac	Lectur	Tutoria 1	Practicu m	Other s	Total Hours/wee k
	h	3	0	2	0	5
Pre- requisites, If any	A deeper und	lerstanding	of mathem	natical Analy	vsis and A	Algebra

Applications of Calculus and Linear Algebra in Finance

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Apply the concept of single variable and several variable calculus to the problems in Economics.	А	1,2,3,4

2	Analyse the money market and goods market and understand the trading strategy and use it effectively	An	1,2,3				
3	Create an optimum solution in terms of productivity and profitability for economic problems	С	1,2				
4	apply Pareto optimality conditions	А	1,2,3,4				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Module Units Course Description		CO No:	Hours
1		Application of Calculus in Finance		
	1.1	ProductionFunctions, Functions, CostFunctions, Functions, 	1	
	1.2	Base10Logarithms, Base e Logarithms, PresentValue, Annuities, Optimal Holding Time	1	
	1.3	 Economic Interpretation, Marginal Products, Elasticity, Geometric Interpretation, an application of higher derivatives in economics, Exercise problems of section 3.6,14.3,14.8 (Practicum) Problems on Elasticity Text II (section 7.7 Exercise) 	1	15
	1.4	System of implicit function (proof excluded) Comparative statics, Simpson's paradox, Exercise problems(Practicum)Exercise Problems of section 15.4 text I, Problems related to Comparative statics Text II (section 13.7)	1	

	Text 1: Chapter 3- Section: 3.6; Chapter 5- Sections: 5.3, 5.6; Chapter 14- Sections: 14.2, 14.3, 14.8(An Economic application); Chapter 15- Sections: 15.3, 15.4 & 15.6					
	10.0, 10.4	Linear Algebra in Finance				
2		EXAMPLES OF LINEAR MODELS				
	2.1	Example 1: Tax Benefits of Charitable Contributions, Example 2: Linear Models of Production, Example 3: Markov Models of Employment, Example 4: IS-LM Analysis, Example 5: Investment and Arbitrage	2	20		
	2.2	Application to Portfolio Theory, IS-LM analysisvia Cramer'S Rule (Practicum)	2			
	Exercise problems Text1 section 9.3					
	2.3	Budget Sets in Commodity Space, Input Space, Probability Simplex	2			
	2.4	The Investment Model, IS-LM Analysis, Supplydemand (Practicum) Exercise 10.42 Text 1(Section 10.7)	2			
	Text 1: Ch Portfolio 7 Chapter20	hapter 6- Section: 6.2; Chapter 7- Section: 7.4(Theory); Chapter 9- Section:9.3; Chapter 10- S 5- Section: 26.4	Application lection: 10.'	to 7;		
3		Optimization in Finance				
	3.1	3				
	3.2	One Constraint, Other Approaches, Profit-Maximizing Firm, Discriminating Monopolist, Least Squares Analysis (Practicum)	3	20		

	Exercise of section 16.3 Text 1		
3.3	Homogeneous Function, Definition and Examples, Homogeneous Functions in Economics, Properties of Homogeneous Functions, A Calculus Criterion for Homogeneity	3	
3.4	Economic Applications of Euler's Theorem, Homogenizing a Function, Economic Applications of Homogenization, cardinal versus ordinal utility	3	
kt 1: Ch apter 2	apter 16- Sections: 16.1 to 16.3; Chapter 17- S 0- Sections: 20.1 to 20.3	Section: 17	.5;
	Advanced Calculus in Finance		
4.1	Concave functions in Economics, quasi concaveand quasi convex Functions, Calculus Criteria,	4	
4.2	Pseudo concave functions, Concave programming-Unconstrained Problems,Constrained Problems, Saddle Point Approach	4	
	(Practicum) Exercise of section 21.5 Text 1		
4.3	4		
	Necessary Conditions for a Pareto		20
1 1	OptimumSufficient Conditions for a	1	
4.4	Welfere Theorems Competitive	4	
	Equilibrium		
	Equilibriulli,		
	3.3 3.4 3.4 4.1 4.2 4.3	Exercise of section 16.3 Text 1 3.3 Homogeneous Function, Definition and Examples, Homogeneous Functions in Economics, Properties of Homogeneous Functions, A Calculus Criterion for Homogeneity Economic Applications of Euler's Theorem, Homogenizing a Function, Economic Applications of Homogenization, cardinal versus ordinal utility xt 1: Chapter 16- Sections: 16.1 to 16.3; Chapter 17- S apter 20- Sections: 20.1 to 20.3 Advanced Calculus in Finance 4.1 Concave functions in Economics, quasi concaveand quasi convex Functions, Calculus Criteria, Pseudo concave functions, Calculus Criteria, Pseudo concave functions, Concave programming-Unconstrained Problems, Constrained Problems, Saddle Point Approach (Practicum) Exercise of section 21.5 Text 1 Utility Maximization, The Demand Function, The Indirect Utility Function, The Expenditure and Compensated Demand Functions, The Slutsky Equation, profit and cost, The Proft-Maximizing Firm, The Cost Function 4.3 Auximizing Firm, The Cost Function 4.4 Pareto OptimumThe Fundamental Welfare Theorems Competitive Equilibrium, Euclident to III for the fundamental	Exercise of section 16.3 Text 1 Homogeneous Function, Definition and Examples, Homogeneous Functions in Economics, Properties of Homogeneous Functions, A Calculus Criterion for Homogeneity Economic Applications of Euler's Theorem, Homogenizing a Function, Economic Applications of Homogenization, cardinal versus ordinal utility 3.4 Applications of Homogenization, cardinal versus ordinal utility Advanced Calculus in Finance Concave functions in Economics, quasi concaveand quasi convex Functions, Calculus Criteria, Pseudo concave functions, Concave programming-Unconstrained Problems, Constrained Problems, Saddle Point Approach 4.1 Concave programming-Unconstrained Problems, Constrained Problems, Saddle Point Approach 4.2 Approach 4.3 Compensated Demand Function, The Indirect Utility Function, The Expenditure and Compensated Demand Functions, The Slutsky Equation, profit and cost, The Proft- Maximizing Firm, The Cost Function 4.3 Necessary Conditions for a Pareto OptimumSufficient Conditions for a 4.4 Pareto OptimumThe Fundamental 4.4 Pareto OptimumThe Fundamental

	Text 1: Chapter 21- sections: 21.2(Concave functions in Economics)21.3 to 21.5; Chapter 22- sections: 22.1 to 22.4(proof of theorems from all sectionsexcluded)
	Teacher Specific Contents
	(This can be either classroom teaching, practical session, field visit
5	etc. asspecified by the teacher concerned)
	This content will be evaluated internally

Teaching		Classroom Procedure (I transaction)	Mode of	
and Learning Approach	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion			
		MODE OF ASSESSM	IENT	
	A	Continuous Comprehensi (CCA)	ve Assessment	
		Components	Mark Distribution	
			1	

Assessment		Teacher Specific C	Content	20 N	Aarks		
Types		Quiz in any mo	5 Marks				
	1 An	Assignment	ER	5 M	larks		
	B	Semester End Examination (Written)					
		Question Pattern					
		Maximum Time 2	Hours, Maxim 70]	num Marks			
	Modu	Part A	Part B	Part C	Total		
	Wodu	2 Marks	5 Marks	10 Marks	Totur		
	Ι	3	2	1	6		
	II	3	3	1	7		
	III	3	2	1	6		
	IV	3	2	1	6		
	Total no of questio	ns 12	9	4	25		

Number of questions to be answered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOKS:

- 1. Carl P. Simon and Lawrence, Mathematics for Economists, Blume Viva Books, 2018
- 2. Prof. Knut Sydsaeter, Prof. Peter Hammond Prof. Arne Strom, Essential Mathematics for Economic Analysis (4th Edition), Pearson Publication, 2012.

SUGGESTED READINGS:

- 1. Chiang, C., Fundamental Methods of Mathematical Economics, McGrawHills, (*Latest Edition*).
- 2. Budnick, Frank, Applied Mathematics for Business, Economics and Social Sciences, McGraw Hills Education, 2017..
- 3. Dowling E. T., Mathematics for economists, Schum Series (latest edition)
- 4. Rosser, Mike, Basic Mathematics for Economists, Routledge, Taylor & FrancisGroup, 2003.

ADVANCED READING:

1. Weber E. Jean, Mathematical Analysis, Business and Economic Applications (LatestEdition) Harper and Row Publishers, New

Discipline S	pecific C	Component	(DSC E)
---------------------	-----------	-----------	---------

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			B Sc Mat	thematics		
Course Name	In	troduction	to Machin	e Learning u	sing Pyth	on
Type of Course		Disciplir	ne Specific (Component (DSC A)	
Course Code	M24MT6DSE300					
Course Level	S VIA		L 3	00		
Course Summary	Machine Lea Science. It I Banking, Insu & Supply Ch This course detailed infor different typ This course a concepts of n	Machine Learning is one of the most sought after domain in Computer Science. It has immense applications in almost all fields of study. Banking, Insurance, Travel and Tourism, Medicine, Education, Logistics & Supply Chain, E-commerce and Computer games are to name a few. This course Introduction to Machine Learning using Python provides detailed information about different types of learning, the concepts of different types of regression, classification algorithms and clustering. This course also provides a hands-on experience to implement the core concepts of machine learning using Python.				
Semester		Credits				
Course Details	Learning Approach	Lecture	Tutorial	Practicum	Others	Total Hours/week
Pre- requisites,If any		3	0	2	U	5

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Understand the difference between traditional programming & machine learning, different types of machine learning and challenges in machine learning.	U	1,2,3
2	Understand, analyze and apply different types of regression.	U, A, An	2,4,5
3	Understand, analyze and apply different types of classification algorithms.	U, A, An	1,2,3,4
4	Understand, analyze and apply different types of clustering algorithms.	U, A, An	1,2,3,5,6
5	Analyse, apply and evaluate the most appropriate machine learning concept from case studies.	An, A, E	1,5,6
*Remo	ember (K), Understand (U), Apply (A), Analyse (An Skill (S), Interest (I) and Apprecia), Evaluate (E), (tion (Ap)	Create (C),

COURSE OUTCOMES (CO)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours	
	1.1	What is Machine Learning?			
		Machine Learning Vs. Traditional Programming	1		
		How Machine Learning Works?		-	
1	1.2	Applications of Machine Learning	1	15	
	1.3	Types of Learning - Supervised Learning, Unsupervised Learning, Semi-supervised Learning, Reinforcement Learning, Active Learning	1		
	1.4	Challenges in Machine Learning	1		
		Problems (Practicum)			
	Text 1: Chapter 1				

	2.1	Introduction, Types of Regression	2	
	2.2	Simple Linear Regression	2,5	15
	2.3	Multiple Linear Regression	2,5	
2	2.4	Non-linear Regression(Polynomial Regression)	2,5	
	2.5	Logistic Regression	2,5	
		Problems (Practicum)	2,5	
	Text 1	: Chapter 2		
3	3.1	Introduction to classification	3	25
	3.2	Decision Trees	3,5	
	3.3	Naïve Bayes classification	3,5	
	3.4	Support Vector Machines	3,5	
	3.5	K-Nearest Neighbours	3,5	
	3.6	Random Forest	3,5	
	Text 1	: Chapter 3		
4	4.1	Introduction, Requirements of Clustering	4	
	4.2	Types of Data in Cluster Analysis - Interval- Scaled Variables, Binary Variables, Categorical Variables, Ordinal Variables, Ratio-Scaled Variables, Variables of Mixed Types	4	20
	4.3	Categorization of Major Clustering Methods - Partitioning Methods - K-means	4,5	
	4.4	Hierarchical Methods - Agglomerative Clustering	4,5	
	4.5	Density-based Methods – DBSCAN	4,5	
	Text 1	: Chapter 4	I	
		Teacher Specific Contents		
5		his can be either classroom teaching, practical session, fi specified by the teacher concerned)	eld visit etc. d	75
		This content will be evaluated internally		

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 1 problem is to be solved from each machine learning concept, and a handwritten copy of the solutions should be kept in the department.

Teaching and		Classroom	Procedure (Mode of trai	nsaction)					
Approach	D	HANAS	SIUS CO	T						
		M	ODE OF AS	SESS <mark>M</mark> ENT						
	Α	Continue	ous Comprel	hensive Asse	ssment (CCA))				
		Co	omponents		Mark Distr	ibution				
		Teacher	ent	20 Ma	rks					
		Quiz	in any mode		5 Mar	CCA) Distribution Distribution D Marks Marks Marks s 70] C Total s				
		As	signment	81	5 Marks					
	В	Sen	(Written)							
		Question Pattern								
Assessment		[Maximum Time 2 Hours, Maximum Marks 70]								
Assessment Types		Module	Part A	Part B	Part C	Total				
					2 Marks	5 Marks	10 Marks	Totul		
		Ι	3	2	1	6				
		II	3	3	1	7				
		III	3	2	1	6				
		IV	3	2	1	6				
		Total no of questions	12	9	4	25				
		Number of questions to be answered	10	6	2	18				
		Total Marks	20	30	20	70				

TEXT BOOK:

1. Jeeva Jose, Introduction to Machine Learning using Python, Khanna Publishers, New Delhi, 2020

SUGGESTED READINGS:

- 12. Manaranjan Pradhan, U Dinesh Kumar, Machine Learning using Python, Wiley, 2019.
- S. Sridhar, M. Vijayalakshmi, Machine Learning, Oxford University Press, 2021.
- 14. Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning: From Theory To Algorithms, Cambridge University Press, 2015.

WEB RESOURCES:

- <u>https://www.javatpoint.com/machine-learning</u>
- https://www.geeksforgeeks.org/machine-learning/
- https://www.simplilearn.com/tutorials/machine-learning-tutorial
- <u>https://www.tutorialspoint.com/machine_learning/index.htm</u>

Discipline Specific Elective – DSE

Investment Science

	Mar Athan	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS				
Programme			B.Sc. Ma	thematics		
Course Name		Investment Science				
Type of Course		Discipline Specific Elective – DSE				
Course Code		M24MT6DSE301				
Course Level		300				
Course Summar y	This course financial we computationa the financial	is an intro orld, that al and qua markets an	duction to enables t ntitative te d actuarial	the applicat he student echniques re mathematic	ion of n to und quired fo s	nathematics in erstand some or working in
Semester	6	Credits	NON C			4
Course Details	Learning Approac	Lectur	Tutoria 1	Practicu m	Other s	Total Hours/wee k
Pre- requisites, If any		3	0	2	0	4

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Calculate simple and compound interest for discreteand continuous cases.	А	1,2
2	Learn about time value of money, bond prices and yields	E	1,2,3

3	Describe asset return, short selling, portfolio returnetc	S	1	
4	Describe capital market line, security market lineetc.	U	1	
*Reme	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),Skill (S), Interest (I) and Appreciation (Ap)			

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
	1.1	Basic principles: Comparison, arbitrage and riskaversion,	1	
1	1.2	Interest (simple and compound, discrete and continuous), Interest rates	1	15
	1.3	Present value analysis	1	
	1.4	Rate of return, continuously varying interestrates.	1	
	(Practicum(Problem)	1	
	2.1	Time value of money, inflation, net present value, internal rate of return (calculation by bisection and Newton- Raphson methods)	2	
2	2.2	Comparison of NPV and IRR. Bonds, bond prices and yields, Macaulay and modified duration	2	15
	2.3	Term structure of interest rates: spot and forward rates	2	
	2.4	Explanations of term structure, running present value, floating-rate bonds, immunization, convexity, putable and callable bonds	2	
		Practicum(Problem)	2	

	3.1	Asset return, short selling, portfolio return, (brief introduction to expectation, variance, covariance and correlation).	3	
3	3.2	Random returns, portfolio mean return andvariance	3	15
	3.3	Diversification, portfolio diagram, feasible set.	3	
	3.4	Markowitz model (review of Lagrangemultipliers for 1 and 2 constraints)	3	
		Practicum(Problem)	3	
	4.1	Two fund theorem, risk free assets, One fundtheorem.	3	
	4.2	Capital market line, Sharpe index. Capital AssetPricing Model (CAPM).	4	
4	4.3	Betas of stocks and portfolios, security marketline.	4	15
	4.4	use of CAPM in investment analysis and as apricing formula, Jensen's index	4	
		Practicum(Problem)	4	
		Teacher Specific Contents		
5	(This can ł etc. asspec	be either classroom teaching, practical session, fi ified by the teacher concerned) This content will be evaluated interna	eld visit hlly	

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

	Classroom Procedure (Mode of
Teaching	transaction)

andLearning Approach	Lect	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion					
		MO	DDE OF AS	SESSMENT	I		
	Α	Continuous Comprehensive Assessment					
		Co		Mark Distribution			
		Teacher	20 M	larks			
		Quiz	in any mode	e	5 M	arks	
		As	ssignment		5 M	arks	
	В	Sen	(Written)				
Assessment Types	Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]						
		Module	Part A	Part B	Part C	- Total	
		Module	2 Marks	5 <mark>M</mark> arks	10 Marks	Total	
		I	3	2	1	6	
		II	NGP 3	3	1	7	
		III	3	2	1	6	
		IV	3	2	1	6	
	1	Total no of questions	12	9	4	25	
		Number of questions to be answered	10	6	2	18	
		Total Marks	20	30	20	70	

REFERENCES:

- 1. David G. Luenberger. *Investment Science*, Oxford University Press, Delhi, 1998.
- 2. John C. Hull. *Options, Futures and Other Derivatives (6th Edition)*, Prentice-Hall India, Indian reprint, 2006.
- 3. Sheldon Ross. *An Elementary Introduction to Mathematical Finance (2ndEdition)*, Cambridge University Press, USA, 2003.
- 4. Kevin J Hastings. Introduction to Financial Mathematics, CRC Press, 2015.

Discipline Specific Elective – DSE

Combinatorics

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme			I Matl	B.Sc. nematics		
Course Name		~	Comb	oinatorics		
Type of Course	1	Disci	pline Spe	cific Electiv	e – DSE	
Course Code	IARA	M24MT6DSE302				
Course Level			\sum_{n}	300		
Course Summary	This cour combinator This appro examination	se is a ial concep pach aims ns by thor	dynami ots, focusin s to help roughly co	c explorating more on students overing exerce	on of problems excel in ise probl	fundamental s than theory. competitive ems.
Semester	6	Credits				4
Course Details	Learning Approach	Lecture 3	Tutorial	Practicum	Others	Total Hours/week 5
Pre- requisites,If any	Elementary Probability	Algebra, theory	Basic Set	theory, Basi	c underst	tanding of

COURSEOUTCOMES(CO)

CO No:	Expected Course Outcome	Learnin g Domain	PSO No:
		S	
	Upon the successful completion of the course, thestudent will be able to		

1	Provides a valuable toolkit for students preparing for competitive exams, offering a wealth of problems that sharpen logical reasoning and problem-solving skills	S	1,2,3
2	Apply combinatorial methods to model and analyse real-world problems, emphasizing the translation of problems into mathematical language	A n	1,2,3
3	Demonstrate a deep understanding of basic combinatorial concepts, such as permutations, combinations, and the multiplication principle	U	1
4	Develop critical thinking skills by analysing and synthesizing complex combinatorial problems, evaluating different approaches, and selecting the most suitable strategies.	Ι	1,2,3,4, 5

*Remember(K),Understand(U),Apply(A),Analyse(An),Evaluate(E),Create(C),Skil l(S), Interest (I) and Appreciation (Ap)

COURSECONTENT

Ν.

Content for Classroom transaction (Units)

1.1

Module	Units	Course Description	CO No:	Hours			
	1.1	1.1 Two basic counting principles					
1	1.2	Permutations	1,3	20			
1	1.3	Circular permutations	1,3				
	1.4 Combinations		1,3				
		Practicum(Problem)	1,2,3				
	Text 1: Chapter 1- Sections: 1.1 to 1.4						
	2.1	The injection and bijection principles	1,4				
2	2.2	Arrangements and selections with repetitions	1,3	20			
	2.3	Distribution Problems	1,3				
		Practicum(Problem)	1,3,4				
	Text 1:	Chapter 1- Sections: 1.5 to 1.7					

3.1	Introduction	1,2				
3.2	The Pigeonhole principle	1,2				
3.3	More examples	1,2,3	20			
3.4	Ramsey Type problems and Ramsey numbers	1,4				
3.5	Bounds for Ramsey Numbers	1,4				
	1,2,3,4					
Text 1: Chapter 3 - Sections: 3.1 to 3.5 (Theorems 3.5.1 and 3.5.2 –						
statemen	tsonly)					
4.1	Introduction	1				
4.2	The Principle of Inclusion and Exclusion:	1,2				
4.3	A generalization	1,2,4				
4.4	Integer solutions and shortest routes	1,2,3				
4.5	The Sieve of Eratosthenes and Eulerfunction	1	15			
	Practicum(Problem)	1,2,3,4				
Text 1: Chapter 4 - Sections: 4.1 to 4.4 & 4.7 (Theorem 4.3.1- statement only)						
	Teacher Specific Contents					
(This can	be either classroom teaching, practical session,	field visit				
etc. asspe	cified by the teacher concerned) This content will be evaluated interv	nallv				
	3.1 3.2 3.3 3.4 3.5 Text 1: C statemen 4.1 4.2 4.3 4.4 4.5 Text 1: C only (<i>This can</i> <i>etc. asspe</i>	3.1 Introduction 3.2 The Pigeonhole principle 3.3 More examples 3.4 Ramsey Type problems and Ramsey numbers 3.4 Ramsey Type problems and Ramsey numbers 3.5 Bounds for Ramsey Numbers 9 - 8.5 Practicum(Problem) 7 Text 1: Chapter 3 - Sections: 3.1 to 3.5 (Theorems 3.5.1 a) 8 statementsonly) 4.1 Introduction 4.2 The Principle of Inclusion and Exclusion: 4.3 A generalization 4.4 Integer solutions and shortest routes 4.5 The Sieve of Eratosthenes and Eulerfunction 9 Practicum(Problem) 7 Text 1: Chapter 4 - Sections: 4.1 to 4.4 & 4.7 (Theorem only) Teacher Specific Contents (This can be either classroom teaching, practical session, etc. asspecified by the teacher concerned) This content will be evaluated interr	3.1Introduction1,23.2The Pigeonhole principle1,23.3More examples1,2,33.4Ramsey Type problems and Ramsey numbers1,43.5Bounds for Ramsey Numbers1,43.5Bounds for Ramsey Numbers1,4Practicum(Problem)1,2,3,4Text 1: Chapter 3 - Sections: 3.1 to 3.5 (Theorems 3.5.1 and 3.5.2 - statementsonly)4.1Introduction14.2The Principle of Inclusion and Exclusion:1,24.3A generalization1,2,44.4Integer solutions and shortest routes1,2,34.5The Sieve of Eratosthenes and Eulerfunction1Practicum(Problem)1,2,3,4Text 1: Chapter 4 - Sections: 4.1 to 4.4 & 4.7 (Theorem 4.3.1- statemonly)Teacher Specific Contents(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)This content will be evaluated internally			

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)							
Approach		Lectu	re, Tutorial a	nd Activity	oriented			
		Μ	IODE OF AS	SESSMEN	Г			
	Α	Continuous Comprehensive Assessment (CCA)						
		C	omponents		Mark Distributi	on		
		Teacher	Specific Cont	ent	20 M	arks		
		Quiz	in any mode		5 Ma	arks		
	1	А	5 Marks					
Assessment	В	B Semester End Examination (Written)						
Types		Question Pattern [Time 2 Hours, Maximum Marks 70]						
		E C	Part A	P <mark>a</mark> rt B	Part C	Total		
		Module	2 Marks	5 Marks	10 Marks			
		IJANLED	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
			Total no of questions	12	9	4	25	
		Number of questions to be answered	10	6	2	18		
		Total Marks	20	30	20	70		

TEXTBOOK:

1. Chen, Chuan-Chong, Khee Meng Koh, and Koh Khee-Meng. *Principles andtechniques in combinatorics*. World Scientific, 1992.

SUGGESTED READINGS:

- 1. Krishnamoorthy, V., Hoewood, E. *Combinatorics theory and applications*, 1986.
- 2. Hall, Jr. Combinatorial Theory, Wiley-Interscinice, 1998.
- 3. Brualdi, RA. Introductory Combinatorics, PrenticeHall, 1992
- 4. Bona Miklos. A Walk Through Combinatorics An Introduction to Enumeration and Graph Theory, Second Edition, World Scientific, 2006.

ADVANCED READINGS:

- Bóna, Miklós, ed. *Handbook of enumerative combinatorics*. Vol. 87. CRC Press,2015.
- 2. Flajolet, Philippe, and Robert Sedgewick. *Analytic combinatorics*. CambridgeUniversity press, 2009.
- 3. Harris, John M. Combinatorics and graph theory. Springer, 2008.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Binomial coefficients and multinomial coefficients.
- Stirling numbers of first kind
- Stirling numbers of second kind
- Surjective mappings and Stirling numbers of second kind
- Derangements and A generalization
- Proof of theorems 3.5.1 and 3.5.2
- Proof of theorems 4.3.1
- Generating functions
- Recurrence relations

Fundamentals of Fluid Dynamics

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SVLLABUS						
Programme	B.Sc. Mathematics						
Course Name		Fur	ndamental	s of Fluid Dy	ynamics		
Type of Course	1	Dise	cipline Spo	ecific Electiv	e – DSE		
Course Code	1 mil	THANA	M24M	T6DSE303			
Course Level		¥ =		300			
Course Summary	This course aims to pave a strong foundation of fluid dynamics. The course is intended to impart knowledge regarding fluids, conservation laws and hence enable students to model basic fluid flow problems. The course begins with introducing the basics of fluid dynamics. The motion of fluids is described using Lagrangian and Eulerian methods. Then the fluid kinematics and the conservation laws are examined. Dimensional homogeneity and dimensional analysis are learned. This enables students to model basic flow problems. This acquired knowledge is used to model one-dimensional flow problems like the Bernoulli's equation and thereafter enable students to solve laminar flows of viscous incompressible fluids. Some real-life problems are modelled and solved mathematically to arrive at analytical solutions.						
Semester	6	Credits				4	
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practicum 2	Others 0	Total Hours/week 5	
Pre- requisites,if any					1	1	

CO No.	Expected Course Outcome	Learning Domains	PSO No.					
	Upon the successful completion of the course, the student will be able to:							
1	Know the fundamentals of fluid mechanics and fluid motion	U, R	1					
2	Learn fluid kinematics and the laws of conservation tomodel fluid flows.	U	1,2,3,4					
3	Apply the acquired knowledge to model one-dimensional fluid flow.	А	1,2,3,					
4	Analyse the dimensional homogeneity of the physical equations.	An	1,5,6					
5	Model laminar flow of viscous incompressible fluids andarrive at analytical solutions.	An	1,2,3,4					
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), E Create (C),Skill (S), Interest (I) and App	Evaluate (E), preciation (A)	D)					

COURSE CONTENT

Content for classroom transaction (Units)

Module	Units	Course Description	CO No.	Hours
		Fluids & fluid motion		
	1.1	Fluid, Isotropy, Fluid Properties.	1	
	1.2	Viscous and Inviscid fluids, Important types offlows.	1	
	1.3 1.4 1.5	Results of vector analysis.	1	
1		Methods to describe fluid motion: Lagrangianand Eulerian methods.	1	
-		Velocity and acceleration of a fluid particle,Material, local and convective derivatives.	1	20
		Practicum(Problem)	1	
	Text 1: C	Chapter 1 – Sections: 1.1 to 1.6; Chapter 2 – Sec	tions: 2.1	to 2.6.

		Fluid kinematics & Conservation Laws				
	2.1	Stream line, Path line, Streak line, Stream tube.	1,2			
	2.2	Equation of Continuity (Cartesian form).	2	20		
2	2.3	Equation of Motion (Cartesian form): TheNavier-Stokes equations.	2			
2	2.4	The Energy equation.	2			
		Practicum(Problem)	2			
	Text 1: 0 Sections: 3.1 & 3.	Chapter 2 – Sections: 2.7 to 2.9, 2.20 to 2.25; (9.	Chapter 3 -	-		
	5	One-dimensional flow & dimensional analysis				
	3.1	One-Dimensional flow: Bernoulli's equation.Bernoulli's Theorem.	3			
	3.2	Flow from a tank through a small orifice:Torricelli's theorem.	3			
	3.3	Dynamical similarity and Inspection analysis:Reynold's principle of similarity.	4			
3	3.4	Dimensional analysis using Rayleigh's Technique.	4	20		
		Practicum(Problem)	4			
	Text 1: Chapter 4 – Sections: 4.1, 4.2, 4.4A; Chapter 15 – Sections: 15.1 to 15.5, 15.13 & 15.14.					
		Laminar flows of viscous incompressible fluids	5			
4	4.1	Flow between parallel flat plates: Plane Couetteflow.	5			
	4.2	Couette flow.	5	15		
	4.3	Plane Poiseuille flow.	5			

	Practicum(Problem)	5				
	Text 1: Chapter 16 – Sections: 16.1 to16.3D.					
	Teacher Specific Contents					
5	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned.)					
	This content will be evaluated internally.					

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching andLearning Approach	Classroom Procedure (Mode of transaction)								
	Lecture and Tutorial Practical Demonstration Using Appropriate Software.								
Assessment Types	MODE OF ASSESSMENT								
	A	Continuous Comprehensive Assessment (CCA)							
		Components			Mark Distribution				
		Teacher Specific Content Quiz in any mode Assignment			20 Marks				
					5 Marks				
					5 Marks				
	В	Semester End Examination (Written)							
		Question Pattern							
		[Maximum Time 2 Hours, Maximum Marks 70]							
	Module	Modulo	Part A	Part B	Part C	Total			
		Widuit	2 Marks	5 Marks	10 Marks	I Utal			

Ι	3	2	1	6
II	3	3	1	7
III	3	2	1	6
IV	3	2	1	6
Total numberof questions	12	9	4	25
Number of questions to beanswered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOK:

1. Raisinghania, M.D. *Fluid Dynamics: With Complete Hydrodynamics and BoundaryLayer Theory*, Eleventh Revised Edition, S. Chand and Company Ltd, 2013.

SUGGESTED READINGS:

- 1. Yuan, S.W. Foundations of Fluid mechanics, Prentice Hall of India, 2001.
- Chandrasekharaiah, D. S., Debnath, L. Continuum Mechanics, Academic Press, 2014.
- 3. Batchelor, G.K. *An Introduction to Fluid Dynamics*, Cambridge University Press, 2000.
- 4. Kundu, P.K., Cohen., I.M., Dowling D.R. *Fluid Mechanics*, Fifth Edition, 2012.

ADVANCED READINGS:

- 1. White, F.M. Fluid Mechanics, Tata Mc Graw Hill, 2011.
- 2. Schlichting, H. Boundary Layer Theory, Tata Mc Graw Hill, 2002.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Classify different types of fluids and draw a graph to differentiate Newtonian andnon-Newtonian fluids.
- Visualize the streamline of a fluid flow for an instantaneous velocity using WolframAlpha.
- Represent the velocity and acceleration of a moving fluid particle
using Sci-labsoftware.

- Inspect the dimensional homogeneity of some well-known physical equations.
- Visualize the Couette flow using MATLAB software.
- Compare the importance of Boundary layer flows and Viscous laminar flows.

Discipline Specific Elective – DSE

Computations and Graphics using Scilab

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS								
Programme		B.Sc. Mathematics							
Course Name		Computations and Graphics using Scilab							
Type of Course	Discipline Specific Elective – DSE								
Course Code	E	M24MT6DSE304							
Course Level		300							
Course Summar y	The course is solving syste curvesand so	s designed : em of linear olving diffe	for doing c equations rential equ	omputations , plotting dat ations using	, matrix o a, visuali Scilab.	operations, sation of			
Semester	6	Credits	E IS PON			4			
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k			
	h	3	0	2	0	5			
Pre- requisites, If any	Fundamental functions,ma	l knowledge atrices, diffe	e on algebre erential equ	aic equation: ations.	s, mather	natical			

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Understand the basic commands used f	U,S	1,2,5,6
2	Apply basic programming techniques in Scilab tocompute the value of expressions involving mathematical functions.	A,S	3

3	Apply Scilab to do various operations in Matrices and solving system of linear equations.	A,S	1			
4	Apply Scilab to plot various mathematical functions, expressions and solving differential equations.	A,S	1,2,5			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),						

Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1	1.1	The General Environment and Console, SimpleNumerical Calculations	1	
	1.2	The Menu bar, The Editor	1,2	
	1.3	1.3The Graphics Window (Graphics for Plotting,Modifying a Plot, Online help), Windows Management and Workspace Customization		15
	(Practicum(Problem)	1,2,4	
	Text 1: Cl	hapter 1 – Become Familiar with Scilab	1	1
2	2.1	Variables Assignment and Display (Variables, Functions)	1	
	2.2	Variables Assignment and Display (Display -Brackets : Vectors and Matrices, Strings)	1,2	-
	2.3 Loops – for, while, Tests – if then else Tests		1,3	20
		Practicum(Problem)	1,2,3	
	Text 1: Cl Display to	napter 2 – Programming – sections: Variables . D Tests	Assignme	nts and
3	3.1	2 D and 3D Plots (Basic Plots - of MathematicalFunctions, Plots of Plane	4	

		Curves)		
	3.2	4	20	
	3.3	2 D and 3D Plots (Plots in 3 dimensions – surfaces and curves)	4	
	3.4	2 D and 3D Plots (Simulations and Statistics, Statistics - Plotting Data using Bar graphs)	5	
		Practicum(Problem)	4,5	
	Text 1: C	Chapter 2 – Programming – sections: 2 D and 3D) Plots	
4	4.1	Additional Information on Matrices and Vectors(Accessing Elements, Operations on Matrices)	3	
	4.2	Additional Information on Matrices and Vectors(Solving Linear Systems, Some useful Functions - sort, length, sum and product)	3	
	4.3	Additional Information on Matrices and Vectors(Some useful Functions - unique, find) Accuracy Computation Solving Differential Equations	2, 4	20
		Practicum(Problem)	2,3,4	
	Text 1: C	Chapter 2 Programming – sections: Additional		
	Informat	ion onMatrices and Vectors to Solving Different	ial	
	Equation	S		
5	(This can etc. asspe	Teacher Specific Contents be either classroom teaching, practical session, fie cified by the teacher concerned) This content will be evaluated internal	ld visit l ly	

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and	nd g h Interactive Instructions using ICT Tools						
Approach							
	1	NAS	Hands on Tra	aining			
		мо	DE OF ASSI	ESSMENT			
	A	Contin	uous Compr (C	eh <mark>e</mark> nsive As CA)	sessment		
		Components			Mark Distribut	ion	
		Teacher	Specific Cont	tent	20 N	Iarks	
		Quiz	in any mode	≥ 1	5 Marks		
	1	Assignment			5 Marks		
Assessment	В	(Written)					
Types		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]					
			Module	Part A	Part B	Part C	Total
		Wiodule	2 Marks	5 Marks	10 Marks	Total	
		Ι	3	2	1	6	
		II	3	3	1	7	
		III	3	2	1	6	
		IV	3	2	1	6	
		Total no of questions	12	9	4	25	
		Number of questions to be answered	10	6	2	18	

	Total Marks	20	30	20	70
--	-------------	----	----	----	----

1. https://www.scilab.org/sites/default/files/Scilab_beginners.pdf

SUGGESTED READINGS:

- 1. https://scilab.in/textbook_companion/generate_book/845
- 2. https://www.scilab.org/sites/default/files/progscilab-v.0.10_en.pdf

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

1. Text 1 : Chapter 3 Useful Scilab Functions (Analysis, Probability and Statistics, Display and Plot, Utilities)

Foundation Component - SEC Numerical methods

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS							
Programme			B.Sc. Ma	thematics				
Course Name			Numerica	al methods				
Type of Course	Foundation Component - SEC							
Course Code	M24MT6SEC300							
Course Level	300							
Course Summar y	Calculation of error and approximation is a necessity in all real life, industrial and scientific computing. The objective of this course is to acquaint students with various numerical methods of finding solution of different type of problems, which arises in different branches of science such as locating roots of equations, finding solution of systems of linear equations and differential equations, interpolation, differentiation, evaluating integration.							
Semester	6	NOWLEDO	Credi ts	1		4		
Course Details	Learning Approac	Lecture	Tutoria 1	Practicu m	Other s	Total Hours/wee k		
Dro roquisitos	n	4	0	0	0	4		
If any								

CO No:	Expected Course Outcome	Learning	PSO
	_	Domains	No:
	Upon the successful completion of the course, the student will be able to		
1	Find the consequences of finite precision and the inherent limits of numerical methods	Ε	1,2,5,6
2	Find appropriate numerical methods to solve algebraicand transcendental equations.	,E	3,4,
3	Use numerical methods to find missing values of data.	А	1,2,6
4	Apply numerical methods to solve real life problems	С	1,2,3,4,5

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO NO:	Hours	
	1.1	Numerical Analysis: Mathematical Preliminaries, Errors and Their Computations.	1		
1	1.2	Introduction, Bisection Method, Method of False Position.	2,3	15	
	1.3	Iteration Method, Newton - Raphson Method	2,3		
	Text 1: C	hapter 1 - Sections: 1.2 to 1.3; Chapter 2 – Sec	tions: 2.1	to 2.5.	
	2.1	Interpolation: Finite Differences, Differences of a polynomial.	4		
2	2.2	Newton's Formulae for Interpolation.	3,4 1	15	
	2.3	Central Difference: Gauss's Central differenceformulae.	4		
	Text 1: C	hapter 3 - Sections: 3.3,3.5,3.6 & 3.7.1			
	3.1	Interpolation with Unevenly Spaced Points:Lagrange's Interpolation Formula.	3,4		
3	3.2 Divided Differences and Their Properties.		3,4	15	
	3.3	Inverse Interpolation.	3,4		
	Text 1- C	hapter 3 - Sections: 3.9.1, 3.10 & 3.11			
	4.1	Numerical differentiation and Integration: Numerical differentiation, Errors in NumericalDifferentiation.	1,3		
A	4.2	Differentiation Formulae with Function Values.	2,4	15	
-	4.3	Numerical integration: Trapezoidal Rule,Simpson's 1/3- rule, Simpson's 3/8- rule.	4		

	Text 1- Chapter 6 - Sections: 6.2.1,6.2.3, 6.4.1 to 6.4.3									
5	(This e etc. as	Teacher Specific Contents(This can be either classroom teaching, practical session, field visitetc. asspecified by the teacher concerned)This content will be evaluated internally								
Teacl andLea	ning Irning		Clas	sroom Procee transact	dure (Mode tion)	of				
Appro	oach	Lec	ture, Teaching, Int Assi	teractive Instru ignment,Librat	iction, Semir ry Work and	ar, Group Group Discu	ission			
			Μ	ODE OF ASS	SESSMENT					
		А	Conti	nuous Comp (C	rehensive A CCA)	ssessment				
		1	Components			Mark Distribut	ion			
		1	Teacher Specific Content			20 Marks				
			Qui	z in any mode		5 Marks				
			A	5 Marks						
		B Semester End Examination (Written)								
Assessi Typ	ment es		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]							
			Module	Part A	Part B	Part C	Total			
			Wodule	2 Marks	5 Marks	10 Marks	Total			
			Ι	3	2	1	6			
			II	3	3	1	7			
			III	3	2	1	6			
			IV	3	2	1	6			
			Total no of questions	12	9	4	25			
			Number of questions to be answered	10	6	2	18			
			Total Marks	20	30	20	70			

1. Sastry, S. S. Introductory methods of Numerical Analysis, 5th edition,

PHI LearningPrivate Limited, 2013.

SUGGESTED READINGS:

- 1. Jain, M. K., Iyengar, S. R. K., & Jain R. K. Numerical Methods for *Scientific and Engineering Computation (6th ed.).* New Age International Publishers. Delhi, 2012.
- 2. Bradie, Brian. *A Friendly Introduction to Numerical Analysis*. Pearson EducationIndia, 2006.
- 1. Chapra, Steven C. Applied Numerical Methods with MATLAB for Engineers andScientists (4th ed.). McGraw-Hill Education, 2018.
- 2. Fausett, Laurene V. *Applied Numerical Analysis Using MATLAB*. Pearson. India,2009.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

• Problem solving using the methods discussed in the module 1, 2, 3 and 4. Extra reading and practice: Stirling's formula, Bessel's formula, Boole's andWeddle's

Foundation Component - VAC

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS							
Programme		B Sc Mathematics						
Course Name	Mathematical Computation and Visualization with R							
Type of Course	T	Foundation Component - VAC						
Course Code		M24MT6VAC300						
Course Level		to		300				
Course Summary	This course visualization will embark functionality	delves int using the on a journ and applie	o the realr powerful ey through cations in v	n of mathem R programm the fundame various mathe	atical con ing langu entals of R ematical d	mputation and lage. Students c, exploring its lomains.		
Semester	6	Credits				3		
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week		
D	Approacn	3	0	0	0	3		
Pre- requisites,If any	Nil							

Mathematical Computation and Visualization with R

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, the student will be able to		
1	Apply R to represent and manipulate sets, including operations like union, intersection, and difference	U	1,2
2	Apply matrix concepts to represent and solve system of linear equations in R	А	1
3	Solve various matrix operations.	А	2
4	Compute determinants of matrices using R & employ Cramer's rule to solve system of linear equations in R	A	1,3,4,
5	Apply R to analyse functions	А	1,2,3
*Reme	mber (K), Understand (U), Apply (A), Analyse (Create (C),Skill (S), Interest (I) an	An), Evaluata 1d Appreciati	e (E), on (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		R FUNCTIONS AND AN OVERVIEW OFSETS USING R		
	1.1	Functions, Parameter versus Argument, Argument Order and Parameter Names, Environments, Scope	1	15
	1.2	Sets, Venn diagram, Cardinality of sets, Implementing the Subset Function in R, Equalityof Sets, Empty Set.	1	
	1.3	Operations on Sets – Intersection, Union,Complement, Cross Product of	1	

		two sets.		
	Text 1 3.11.	: Chapter 1 - Sections: 1.2 to 1.6; Chapter 3- Se	ections: 3.1	to 3.9 &
2		SYSTEM OF LINEAR EQUATIONS ANDMATRICES IN R		
	2.1	Matrix & Vector in R	2	15
	2.2	Solving a System of Linear Equations with R (Gaussian Elimination in R)	2	
	2.3	Matrix Operations in R - Addition, Scalarmultiplication, Dot product, Transpose	3	
	2.4	Determinant, function, Cramer's rule in R	4	
	Text 2 Section 2.1, 2.2 only , 3.3.4 {	: Chapter 1 – Sections: 1.2.3, 1.2.7, 1.3.3, 1.3.7 ns: 2(2.2.1-2.2.3 & 2.2.7); Chapter 3 - Sections: 3. lab exercises using det() function}, 3.5.3 & 3.5.	7; Chapter 2 3 det() fur .7.	2 - nction
3		PLOTTING GRAPHS IN R		
	3.1	Basic arithmetic, Define and Evaluate a Function, Graph a Function in R, Find Roots of a Function, Store Roots as a Variable and Display the First Root, Evaluate a Function with a Variable, Add a Point to a Graph, Evaluate a Function at Multiple Values, Add Multiple Points to a Graph	5	15
	3.2	Define a Function from a Function, Define a Function and Graph It, Identify Intersection Points and Add Them to the Graph, Add a Line Segment to a Graph	5	
	Text 3	: Chapter 1 (R codes 1.1 to 1.20),		

	Teacher Specific Contents
4	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)
	This content will be evaluated internally

		Classroom	n Procedure	(Mode of tra	ansaction)	
Teaching and Learning Approach	Teaching and Learning ApproachThe primary goal of this class is to enhance students' proficiency in mathematical computation and visualization using the R programming language. The course will cover fundamental mathematical concepts andtheir practical implementation through R.					
	Class	Structure:				
	1	Introduction -	Outline the	goals and expe	ectations for th	e class
	2. Recap and Review - Briefly review the key concepts covered					overed
	3. Theory and Conceptual Understanding - Discuss theoretical aspects and provide real-world examples					
	4. Hands-On Computation with R - Conduct practical exercises using R to reinforce mathematical concepts					
	5.	Group Project	- Assign a g	roup project	-	
	Home	ework Assignme	nt - Assign r	elevant home	work to reinfo	rce
			MOI ASSES	DE OF SMENT		
		Continu	ous Compre	ehensive Asso	essment (CCA	1)
	Α	Component s		Mark Distribution		
		Teacher Specific Content			20 Marks	
		A	Assignment		5 Ma	rks
		Se	emester End	Examination	n (Written)	
			Ques	tion Pattern		
Assessmen		[Maximu	ım Time 90	Minutes, Ma 50]	ximum Mark	S
<i>crypes</i>		Modula	Part A	Part B	Part C	Tote
	р	wiodule	1 Marks	5 Marks	10 Marks	1
	D	Ι	4	2	1	7

II	4	2	2	8
III	4	2	1	7
Total no of questions	12	6	4	22
Number of questions to be answered	10	4	2	16
Total Marks	10	20	2 0	50

- 1. Claster, William B. *Mathematics and programming for machine learning with R:from the ground up.* CRC Press, 2021.
- 2. Yoshida, Ruriko. *Linear algebra and its applications with R.* CRC Press, 2021.
- 3. Pfaff, Thomas J. *Applied Calculus with R*. Springer International Publishing, 2023.

SUGGESTED READINGS:

- 1. Zuur, Alain F., Elena N. Ieno, and Erik HWG Meesters. *A Beginner's Guide to R*.New York: Springer, 2009.
- 2. Matloff, Norman. *The art of R programming: A tour of statistical software design*. NoStarch Press, 2011.
- 3. Strang, Gilbert. *Introduction to linear algebra*. Wellesley-Cambridge Press, 2022.
- 4. Weir, Maurice D., et al. *Thomas' calculus: early transcendentals: based on theoriginal work by George B. Thomas, Jr.* Addison-Wesley, 2006.

ADVANCED READINGS:

- 1. Emmert-Streib, Frank S., Salissou Moutari and Matthias Dehmer. *MathematicalFoundations of Data Science using R*, De Gruyter, 2022.
- 2. Jones, Owen, Robert Maillardet and Andrew Robinson. *Introduction to ScientificProgramming and Simulation Using R*, 2nd edition, Chapman & Hall/CRC, 2014.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

Any suitable topic from Textbook 2 can be included.

Semester 7

Title of the Course	Type of the Course	Credit	Hours/ Week
Advanced Linear Algebra-	Discipline Capstone Component (Advanced) - DCC	4	5
Theory Of ComplexFunctions	Discipline Capstone Component (Advanced) - DCC	4	4
Introduction to MetricSpaces	Discipline Capstone Component (Advanced) - DCC	4	4
Advanced Theory of Groups and Rings	Discipline Capstone Component (Advanced) - DCC	4	4
Real Analysis	Discipline Capstone Component (Advanced) - DCC	4	4
Graph Theory	Discipline Capstone Component (Advanced) - DCC	4	4
	Title of the CourseAdvanced Linear Algebra-Theory Of ComplexFunctionsIntroduction to MetricSpacesAdvanced Theory of Groups and RingsReal AnalysisGraph Theory	Title of the CourseType of the CourseAdvanced Linear Algebra-Discipline Capstone Component (Advanced)- DCCTheory Of ComplexFunctionsDiscipline Capstone Component (Advanced)- DCCIntroduction to MetricSpacesDiscipline Capstone Component (Advanced)- DCCAdvanced Theory of Groups and RingsDiscipline Capstone Component (Advanced)- DCCReal AnalysisDiscipline Capstone Component (Advanced)- DCCGraph TheoryDiscipline Capstone Component (Advanced)- DCCGraph TheoryDiscipline Capstone Component (Advanced)- DCC	Title of the CourseType of the CourseCreditAdvanced Linear Algebra-Discipline Capstone Component (Advanced) - DCC4Metric SpacesDiscipline Capstone Component (Advanced) - DCC4Introduction to Metric SpacesDiscipline Capstone Component (Advanced) - DCC4Advanced Theory of Groups and RingsDiscipline Capstone Component (Advanced) - DCC4Real AnalysisDiscipline Capstone Component (Advanced) - DCC4Graph Theory Discipline Capstone Component (Advanced) - DCC4Discipline Capstone Component (Advanced) - DCC4Component (Advanced) - DCC4Discipline Capstone Component (Advanced) - DCC4Component (Advanced) - DCC4Discipline Capstone Component (Advanced) - DCC4

-~

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme		В	Sc Mathe	ematics		
Course Name		Adva	nced Line	ear Algebr	a	
Type of Course	Discip	line Caps	tone Com DCC	ponent (A	dvanced) –
Course Code	M24MT7DCC400					
Course Level Course Summary	400 This course on linear algebra provides a comprehensive introduction to the fundamental concepts and techniques of linear algebra. The course covers a wide range of topics, including vector spaces, coordinates, linear transformations, linear functionals, matrix of linear transformations, dual spaces, characteristic values, annihilating polynomials invariant subspaces simultaneous triangulisation and					
	diagonalisation, d	lirect sum	decompos	sition, and	invariant	direct sums.
Semester	7	Credits				4
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practical 2	Others 0	Total Hours/week 5
Pre- requisites,If any	Basic definitions, spaces, subspaces	propertie , basis and	s and theo l dimensio	rems on Fi n.	elds, Vec	ctor

Discipline Capstone Component (Advanced) - DCCAdvanced Linear Algebra

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Analyse finite and infinite dimensional vector spaces and subspaces over a field and their properties including basis structure of vector spaces	An	1,2,3,6
2	Use the definition and properties of linear transformations and matrices of linear transformations and change of basis, including kernel, range and isomorphism	A, An	1
3	Compute the characteristic polynomial, eigenvectors, eigenvalues and eigenspaces, as well as the geometric and the algebraic multiplicities of an eigenvalue and apply the basic diagonalization result	A, E	1,2,3,4
4	Understand the basic theory of Simultaneous triangulations, Direct sum decompositions and Invariant direct sums	U, An	1
5	Utilize Python to perform computations efficientlyin linear algebra.	S, A	2
*Reme	mber (K), Understand (U), Apply (A), Analyse (A) Create (C),Skill (S), Interest (I) and	n), Evaluate Appreciatio	e (E), on (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Review on Fields, Vector spaces, subspaces, basis and dimension (Theorems-Statements only)	1	
	1.2	Coordinates	1, 2	20
1	1.3	Linear transformations and Algebra of LinearTransformations	1, 2	
	1.4	Isomorphism	1, 2	
		Problems (Practicum)	1,2	
	Text 1 2.4:	1: Chapter 1 – Section: 1.1; Chapter 2 –	Sections:	2.1 to

	Chapt	ter 3 – Sections: 3.1 to 3.3.		
	2.1	Representation of transformations by matrices	1, 2	
	2.2	Linear functionals and dual space	1, 2	20
2	2.3	Double dual	1, 2	
		Problems (Practicum)	1,2	
	Text 1	: Chapter 3 – Sections: 3.4 to 3.6		

	3.1	Characteristic Values	3			
	3.2	Diagonalizable linear operators	3,4			
2	3.3	Annihilating polynomials	2,3,4	20		
3	3.4	Cayley Hamilton Theorem	3,4			
	3.5	Invariant subspaces	3,4			
		Problems (Practicum)	2,3,4			
	Text 2	1: Chapter 6 – Sections: 6.1 to 6.4.				
	4.1	Simultaneous triangulation; simultaneousdiagonalization	3,4			
	4.2	Direct sum Decompositions	3,4	15		
4	4.3	Invariant Direct Sums	3,4			
		Problems (Practicum)	3,4,5			
	Text 1: Chapter 6 – Sections: 6.5 to 6.7.					
		Teacher Specific Contents				
5	(Th	is can be either classroom teaching, practical ses etc. asspecified by the teacher concerne	ssion, field v ed)	visit		
		This content will be evaluated intern	allv			
1	1		·· J			

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)							
andLearning Approach	Lect	ures, Tutorials, In	nteractive Se	ssions, Blen	ded Learning			
	56	M	ODE OF A	SSESSMEN	T			
	А	A Continuous Comprehensive Assessment (CCA)						
		C	omponents		Mark Distrib	oution		
		Teacher	Specific Co	ntent	20 M	arks		
		Quiz	z in any mod	le	5 Ma	ırks		
	11	Assignment			5 Marks			
	В	Semester End Examination (Written)						
		Question Pattern						
A		[Maximum Time 2 Hours, Maximum Marks 70]						
Types		Module	Part A	Part B	Part C	- Total		
			2 Marks	5 Marks	10 Marks			
		Ι	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
		Total no of questions	12	9	4	25		
		Number of questions to be answered	10	6	2	18		
		Total Marks	20	30	20	70		

1. Hoffman, K., Kunze, R. Linear algebra: Second edition. Prentice-Hall of India Pvt.Ltd, 1992.

SUGGESTED READINGS:

- 1. Strang, G. Linear algebra and its applications. Cengage Learning, 2016.
- 2. Lay, D. C., Lay, S. R., & McDonald, J. J. *Linear algebra and its applications* (5thed.). Pearson, 2023.
- 3. Lang, S. Introduction to linear algebra (2nd ed.). Springer-Verlag New York, Inc,1997.
- 4. Kumaresan, S. *Linear algebra: A geometrical appr*oach. Prentice-Hall of India,2000.
- 5. Axler, S. Linear algebra done right (4th ed.). Springer, 2023
- 6. Jänich, K. *Linear Algebra (Undergraduate Texts in Mathematics).* Springer-VerlagNew York, 2014.
- 7. Banchoff, T. F., & Wermer, J. T. Linear algebra through geometry (2nd ed.). Springer,2002.
- 8. Friedberg, S. H., Insel, A. J., & Spence, L. E. *Linear algebra (4th ed.)*. Pearson, 2013.
- 9. Horn, R. A., & Johnson, C. R. *Matrix analysis (2nd ed.)*. Cambridge, UK: CambridgeUniversity Press, 2013.
- 10. Thamban Nair, M., & Singh, A. Linear Algebra. Springer, 2018.
- 11. Video lectures of Gilbert Strang Hosted by MITOpenCourseware available at <u>VideoLectures | Linear Algebra | Mathematics | MIT</u> <u>Open Course Ware</u>.
- 12. Klein, P. N. Coding the Matrix Linear Algebra through Applications to ComputerScience, Newtonian Press, 2013.
- 13. Dan Bader, David Amos, Joanna Jablonski, Fletcher Heister: *Python Basics: APractical Introduction to Python (1st Edition)* Real Python March 2021

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Use Python to perform computations in the modules 1 to 4 efficiently
- Transpose of a Linear Transformation (Chapter 3 Section 3.7)
- The rational and Jordan forms (Chapter 7-Sections 7.1 to 7.3)

Discipline Capstone Component (Advanced) - DCCTheory of Complex Functions

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B Sc Mathematics
Course Name	Theory of Complex Functions
Type of Course	Discipline Capstone Component (Advanced) – DCC
Course Code	M24MT7DCC401
Course Level	400
Course Summar y	This course is designed to develop analytical skills in complex analysis and comprehensive understanding of topics in complex analysis, preparing students for further explorations. It will explore the properties of lines and half planes in the complex plane, investigate power series and their convergence, and uncover the geometric significance of spherical representations. The course will delve into the Mobius transformations, representation of complex analytic functions as power series, providing powerful tools for expanding and analyzing these functions. Cauchy's theorems, a cornerstone of complex analysis, will be studied in its various forms, revealing its profound implications for contour integration. Students will master the theory of complex integration, gaining proficiency in evaluating integrals along contours in the complex plane. The concept of the index of a closed curve, open mapping theorem and argument principle will be discussed and their implications being analyzed. These theorems provide deep insights into the behavior of analytic functions and their relationship with the complex plane.

Semester	7	Credits				4
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k
	h	4	0	0	0	4

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Demonstrate a comprehensive understanding of the properties of lines and half planes in the complex plane, power series of complex numbers, spherical representation and Mobius transforms	U	1, 2, 3
2	Illustrate complex analytic functions as power series expansions, recognizing the convergence properties and regions of validity of these representations.	А	1, 3
3	Analyze various versions of Cauchy's theorem and applying them to solve complex integration problems.	An	1, 5
4	Evaluate the index of a closed curve and determine the types of residues (simple, pole, and essential singularities) that can occur within a given contour.	E	1, 2, 4
5	Interpret open mapping theorem and the argumentprinciple to gain insights into the behaviour of holomorphic functions and their mappings.	E	1, 2, 6
*Reme	mber (K), Understand (U), Apply (A), Analyse (A) Create (C),Skill (S), Interest (I) and	n), Evaluate Appreciatio	(E), on (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours			
	1.1	Lines and half planes in the complex plane	1				
	1.2	Extended Plane and its Sphericalrepresentation	1				
1	1.3	Power Series	1	15			
	1.4	Analytic functions	2				
	1.5	Analytic functions as mappings. MobiusTransformations	1				
	Text 1:	Chapter 1 – Sections: 5 & 6; Chapter 3 – Sec	tions: 1 to 3	3			
	2.1	Riemann - Stieltjes integrals	3				
2	2.2	2.2 Power series representation of analyticfunctions					
	2.3	Zeros of an analytic function	2				
	2.4	The index of a closed curve	4				
	Text 1: Chapter 1 – Sections: 1 to 4 (only statements of theorem 1.4 and						
	lemma 1	.19)					
	3.1	Cauchy's theorem and integral formula	3				
	3.2	Homotopy version of Cauchy's theorem and simple connectivity	3	15			
3	3.3	Counting zeros, Open mapping theorem	5				
	3.4	Goursat theorem	3				
	Text 1: Chapter 4 – Sections: 5 to 8 (only statement of third version of Cauchy's theorem)						
4	4.1	Classification of singularities	4	15			
4	4.2	Residues	4				

	4.3	Argument Principle	5	
	Text 1:	Chapter 5 – Sections: 1 to 3		
5	(This can etc. assp	Teacher Specific Contents a be either classroom teaching, practical session ecified by the teacher concerned) This content will be evaluated intern	n, field visit nally	

		Classroom Procedure (Mode of transaction)						
Teaching andLearning Approach	Lecture methods Student Lectures on appropriate sections Activity based Tutorials/Practical							
rippioaen		Softwa	re based vi	sualisation	of concepts			
	1	HAN	MODE OF	ASSESSM	IENT			
	A	A Continuous Comprehensive Assessment (CCA)						
		E C	Mark Di	stribution				
		Teache	r Specific C	ontent	20 N	Aarks		
		Qui	z in any mo	5 Ma	; rks			
		A	Assignment	5 Marks				
	В	Semester End Examination (Written)						
Assessment Types		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]						
- 5 P ***			Part A	Part B	Part C	T (1		
		Module	2 Marks	5 Marks	10 Marks	I otal		
		Ι	3	2	1	6		
		II	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
		Total no of questions	12	9	4	25		
		Number of	10	6	2	18		
		questions to be						

Total 20 30 20 70 Marks 1 <

 Conway, John B. Functions of one complex variable, 2nd Edition. Springer, 1978.

SUGGESTED READINGS:

- 3. Lars V. Ahlfors, *Complex Analysis, Third edition*, McGraw Hill Internationals, 1979
- 4. Gamelin, Theodore. *Complex analysis*. Springer Science & Business Media, 2003.
- 5. Priestley, H. A. Introduction to Complex Analysis. OUP Oxford, 2003.
- 6. Mathews, John, and Russell Howell. *Complex analysis for mathematics and engineering*. Jones & Bartlett Publishers, 2012.
- 7. Cartan, Henri. *Elementary theory of analytic functions of one or several complexvariables*. Courier Corporation, 1995.
- 8. Lang, Serge. *Complex analysis*. Vol. 103. Springer Science & Business Media, 2013.

ADVANCED READINGS:

- 1. Asmar, Nakhlé H., and Loukas Grafakos. *Complex analysis with applications*.Berlin: Springer, 2018.
- 2. Nevanlinna, Rolf, and Veikko Paatero. *Introduction to complex analysis*. Vol. 310.American Mathematical Society, 2007.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Study the Group structure of Mobius Transformations.
- Proof of Theorem 1.4 and Lemma 1.19 in Chapter 4 of Text 1
- Third version of Cauchy's Theorem
- Problems and applications of residues and Residue Theorem
- Discussion on latest research areas in Complex Analysis

Discipline Capstone Component (Advanced) - DCCIntroduction to Metric Spaces

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme	B Sc Mathematics						
Course Name	Introduction to Metric Spaces						
Type of Course	Discipline Capstone Component (Advanced) – DCC						
Course Code	M24MT7DCC402						
Course Level	400						
Course Summary	An introduction to fundamental concepts in Metric Space andgeneralization of continuity, connectedness, smallness conditions to metric spaces						
Semester	7 Credits 4					4	
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/Hours	
	Approach	4	0	0	0	4	
Pre- requisites,If any	Set and Func	tions, Fund	damentals of	of Analysis			

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Visualize the concept of distance as a mathematical function in various spaces	A, S, I, Ap	1,2,3,4,5
2	Develop their abstract thinking skills.	A, C, S, I, Ap	1,2,5,6

3	Define and Illustrate the concept of metric spaceand its properties	K, U,S,Ap	1,2,3,6
4	Explain the concept of continuity connectednessand compactness	K, U,S	1,2,3
5	Explain the fundamental concepts of modernanalysis and generalization to arbitrary sets.	K, A, C	1,6
*Remei	mber (K), Understand (U), Apply (A), Analyse (A) (C),Skill (S), Interest (I) and Apprec	n), Evaluate (ciation (Ap)	E), Create

COURSE CONTENT

Hours Module Units CO **Course Description** No: Inequalities 1 1.1 Metric Spaces 1.2 1 Sequences in metric spaces 1.3 1,2 15 1 Cauchy Sequence (Definitions, Examples andstatements only) 1.4 2,3 Completion in Metric Spaces (Proof of 1.5 2,3 Theorem 1.5.3 is excluded) Text 1: Chapter 1 – Sections: 1.1 to 1.5 Open and Closed Sets 2.1 3 Relativization and subspaces 2.2 3,5 15 2 Countability Axioms and Separability 2.3 3,5 Text 1: Chapter 2 – Sections: 2.1 to 2.3 **Continuous Mapping** 3.1 4 Uniform continuity 3.2 2,4 15

3	3.3	Homeomorphism , Equivalent metrics and Isometry	2,4						
	Text 1:	Chapter 3 – Sections: 3.1, 3.4 & 3.5							
	4.1	Connectedness	4,5						
	4.2	Bounded sets and compactness	4,5	15					
4	4.3 Other characterisation of compactness		4,5						
	4.4	Continuous functions on compact spaces	4,5						
	Text 1:	Chapter 4 – Sections: 4.1; Chapter 5 - Sections	: 5.1 to 5.3						
		Teacher Specific Contents							
5	(This co etc. ass	an be either classroom teaching, practical session, pecified by the teacher concerned)	field visit						
		This content will be evaluated inter	nally						

		TOTHAN	ANGALAN				
Teaching and Learning Approach		Classroom Procedure (Mode of transaction)					
		Chalk and Talk, Group Discussion, Seminar, Interactive Sessions, Tutorials, Assignment, Quiz					
Assessment Types		MODE OF ASSESSMENT					
	Α	Continuous Comprehensive Assessment (CCA)					
		Components Mark Distribution					
		Teacher Specific Content 20 Marks					
		Quiz in any mode 5 Marks					
		5 Marks					
	В	B Semester End Examination (Written)					
		Question Pattern					
		[Maximum Time 2 Hours, Maximum Marks 70]					
		Modula	Part A	Part B	Part C	Total	
		Module	10	Total			

			Marks	
Ι	3	2	1	6
II	3	3	1	7
III	3	2	1	6
IV	3	2	1	6
Total no of question s	12	9	4	25
Number of questions tobe answered	10	6	2	18
Total Marks	20	30	20	70

1. Satish Shirali, Harikrishnan L Vasudeva, Matric Spaces, Springer – Verlag LondonLimited 2006.

SUGGESTED READINGS:

- Simmons, George F. Introduction to Topology and Modern Analysis, McGraw-Hill Book Company, 1963.
- 2. Joshi, K.D. Introduction to General Topology, Wiley Eastern Ltd, 1984.

ADVANCED READING:

1. Dugundji. Topology, Universal Book Stall, New Delhi, 1989.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Related Exercise problems in 1.6, 2.5, 3.8
- Proofs of all propositions in section 1.4
- Section 4.2: Local connectedness

Discipline Specific Elective – DSE

Advanced Theory of Groups and Rings

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B Sc Mathematics					
Course Name	Advanced Theory of Groups and Rings					
Type of Course	T	Discipline Specific Elective – DSE				
Course Code	SW.	M24MT7DCE400				
Course Level				400		
Course Summary	The objective of the course is to introduce advanced concepts in groups and rings. The first module includes direct products, classification of finitely generated abelian groups, factor groups and homomorphisms, normal subgroups and inner automorphisms. The second module covers computations of factor groups, simple groups, group actions and application of G-sets to finite groups. The third module includes isomorphism theorems, Sylow theorems and its applications. The fourth module contains homomorphism, factor rings					
Semester	7	Credits				4
Course Details	Learning Approach	Lecture 4	Tutorial 0	Practicum 0	Others 0	Total Hours/week 4
Pre- requisites,If any	Fundamental	ls of Group	os and Ring	gs	1	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:				
	Upon the successful completion of the course, thestudent will be able to						
1	Understand and construct direct products of groups and analyse the structure of finitely generated abelian groups	Е	1,2,3,4,5,				
2	Comprehend the concepts of normal subgroups, factor groups and simple groups, identify and apply the properties of factor groups and homomorphisms, compute factor groups and analyse their properties	А	1,2,3,6				
3	Understand group action on a set, construct examples of G-sets and orbits and apply the resultson G-sets to the study of finite groups	An	1,2,3				
4	Comprehending Sylow theorems, students will apply the Sylow theory to classify groups of different orders.	Е	1,2				
5	Analysing homomorphisms, factor rings, prime andmaximal ideals.	An	1,2				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1	1.1	Direct Products	1	
	1.2	The structure of finitely Generated Abeliangroups	1	
	1.3	Applications	1	17
	1.4	Factor groups	2	
	1.5	Homomorphisms and factor groups	2	

	1.6	Normal subgroups and inner automorphisms	2				
	Text 1: Sections: 9 & 12						
2	2.1	Factor group computations and Simplegroups	2	17			
	2.2	Center and Commutator subgroups.Statement of Theorem 13.17.	2	1/			
	2.3	Group action on a set: The notion of a groupaction	3				
	2.4	Isotropy subgroups, Orbits	3				
	2.5	Application of G-sets to finite groups	3				
	Text 1:	Sections: 13 & 14					
3	3.1	Isomorphism theorems	2	14			
	3.2	Sylow theorems	4	14			
	3.3	4					
	Text 1: Sections: 16 & 17						
4	4.1	Factor rings	5				
	4.2	Homomorphisms, Properties of	5				
	4.3	Fundamental homomorphism theorem (forrings)	5	12			
	4.4	Prime and maximal ideals	5				
	4.5	Prime Fields	5				
	Text 1:	Sections: 30 & 31.1 to 31.20					
5	Teacher Specific Contents(This can be either classroom teaching, practical session, field visitetc. asspecified by the teacher concerned)This content will be evaluated internally						

Teaching		Classroom Procedure (Mode of transaction)						
andLearning Approach		Lectures, Tutorials, Interactive Sessions, Blended Learning						
		N	MODE OF A	ASSESSME	NT			
	Α	A Continuous Comprehensive Assessment (CCA)						
Assessment		Components			Mark Distr	ibution		
Types			Quiz in any mode			`ks		
			Seminar		10 Marks	·ks		
		А	ssignment		5 Ma	rks		
	В	B Semester End Examination (Written)						
		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]						
	- 1	Module	Part A	Part B	Part C	Total		
			2 Marks	5 Marks	10 Marks			
		I	MANC3	2	1	6		
		IIDNE	3	3	1	7		
		III	3	2	1	6		
		IV	3	2	1	6		
		Total no of questions	12	9	4	25		
		Number of questions to be answered	10	6	2	18		
		Total Marks	20	30	20	70		

 Fraleigh, John B., and Neal E. Brand. A First Course in Abstract Algebra 8th ed,Pearson Education, 2021

SUGGESTED READINGS:

- 1. Dummit, David S., and Richard M. Foote. *Abstract Algebra. 3rd ed.* Wiley, 2003.
- 2. Artin, M. Algebra. 2nd ed., Pearson Education, 2017.
- 3. Herstein, I. N. Topics in Algebra, 2nd Edition, John Wiley and Sons, 2010

- 4. Gallian , Joseph A, *Contemporary Abstract Algebra*, 10th edition ,Cengage 2015.
- 5. Musili, C. Introduction to Rings and Modules, 2nd revised Edition, Narosa ,1997.
- 6. Hungerford, Thomas W, *Algebra*, Springer, 2011.

ADVANCED READINGS:

- 1. Hungerford, Thomas.W., Algebra, 4th Print 2003 Edition.
- 2. Lang, Serge, Algebra, 4th Print 2005 Edition

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- > Proving A_n is simple for $n \ge 5$.
- Applications of G-sets to counting. Burnside's Theorem (Section 15 of Text 1)

Discipline Specific Elective – DSE

Real Analysis

Г

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B Sc Mathematics					
Course Name Type of Course	Real Analysis Discipline Specific Elective – DSE					
Course Code	M24MT7DCE401					
Course Level	N N		4	00		
Course Summar y	This course covers essential topics in mathematical analysis, including functions of bounded variation and rectifiable curves, the Riemann- Stieltjes integral, sequence and series of functions. Students will explore the Riemann-Stieltjes integrals. Its applications to vector-valued functions will be addressed, along with discussions on uniform convergence, integration, and differentiation in the context of sequences and series of functions. The course concludes with an examination of equicontinuous families, the Weierstrass theorem, and the power series					
Semester	7	Credits				4
Course Details	Learning Approac h	Lectur e 4	Tutoria 1 0	Practicu m 0	Other s	Total Hours/wee k 4
Pre- requisites, If any	Fundamentals	of Mathe	matical Ar	alysis	<u> </u> _	1
CO No:	Expected Course Outcome	Learning Domains	PSO No:			
--------	---	-------------------------------	-------------------			
	Upon the successful completion of the course, thestudent will be able to					
1	Understand and analyses functions of bounded variations and its properties.	U, An	1			
2	To analyze and parametrize curves, calculate arc lengths, and apply additive and continuity properties and fostering problem-solving skills in practical mathematical scenarios.	An	1,2,3			
3	To understand and analyse the properties the Riemann-Stieltjes integral	U, An	1,5,6			
4	To understand and analyse the concept of uniformconvergence and its properties.	U, An	1,4,5,6			
5	To understand Equicontinuous families of functions	U	1,5,6			
*Reme	mber (K), Understand (U), Apply (A), Analyse (A Create (C),Skill (S), Interest (I) and	n), Evaluate I Appreciatio	e (E), on (Ap)			

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Introduction, properties of monotonic functions, functions of bounded variation	1	
1	1.2	Total variation, additive property of total variation, total variation on (a, x) as a function of x.	1	15
	1.3	Functions of bounded variation expressed as the difference of increasing functions, continuous functions of bounded variation.	1	13
	1.4	Curves and paths, rectifiable path and arc length	2	

	1.5	Additive and continuity properties of arc length.	2					
	Text 1	: Chapter 6 - Sections: 6.1 to 6.11.	1					
	2.1	Definition and existence of the integral	3					
2	2.2	Properties of the integral	3	15				
	2.3	Integration and differentiation.	3					
	2.4	Integration of vector valued functions.	3					
	Text 1	: Chapter 6 - Sections: 6.12 to 6.25						
	3.1	Sequence and series of functions - Discussion of main problem.	4					
3	3.2	Uniform convergence.	4	15				
	3.3	Uniform convergence and Continuity.	4					
	3.4	Uniform convergence and Integration.	4					
	3.5	Uniform convergence and Differentiation.	4					
	Text 2: Chapter 7 - Sections: 7.1 to 7.18.							
	4.1	Equicontinuous families of functions.	5					
4	4.2	4.2 The Weierstrass theorem		15				
	4.3	Power series	5					
	Text 2: Chapter 7 - Sections: 7.19 to 7.27; Chapter 8 – sections: 8.1 to 8.5.							
	/T	Teacher Specific Contents	on field was	:4				
5		nis can be either classroom teaching, practical sessi etc. asspecified by the teacher concerned)	on, fiela visi)	u.				
		This content will be evaluated internal	ly					

	Classroom Procedure (Mode of
Teaching and	transaction)

Learning Approach		Lecture, Tutorial and Activity oriented						
		MO	DDE OF AS	SESSMENT				
	Α	Contir	nuous Comp ((orehensive A CCA)	ssessment			
Assessment Types		Co	omponents		Mark Distribut	ion		
		Teacher	Specific Con	ntent	20 N	Iarks		
			Seminar		5 M	arks		
		As	ssignment		5 M	arks		
	В	Ser	Semester End Examination (Written)					
	J	[Maximu	on Pattern Iours, Maxir 70]	mum Marks				
	16	Module	Part A	Part B	Part C	Total		
		Module	2 Marks	5 <mark>M</mark> arks	10 Marks	101a		
		I	3	2	1	6		
		II	NGA3	3	1	7		
		III	3	2	1	6		
		IV	3	2/	1	6		
		Total no of questions	12	9	4	25		
		Number of questions to be answered	10	6	2	18		
		Total Marks	20	30	20	70		

TEXT BOOKS:

- 1. Apostol, Tom M. Mathematical analysis. Narosa, 1974.
- 2. Rudin, Walter. *Principles of mathematical analysis*. Vol. 3. New York: McGraw-hill,1976.
- 3.

SUGGESTED READINGS:

1. Stein, Elias M., and Rami Shakarchi. *Real analysis: measure theory, integration, andHilbert spaces.* Princeton University Press, 2009.

- 2. Abbott, Stephen. Understanding analysis..springer publication, 2015.
- 3. Fitzpatrick, Patrick. *Advanced calculus*.Vol. 5. American Mathematical Soc., 2009.
- 4. Folland, Gerald B. *Real analysis: modern techniques and their applications*. Vol. 40.John Wiley & Sons, 1999.
- 5. Royden, H.L. Real Analysis, 2nd edition, Macmillan, New York.

ADVANCED READINGS:

- 1. Gelbaum, Bernard R., and John MH Olmsted. *Counterexamples in analysis*. CourierCorporation, 2003.
- 2. Carothers, Neal L. Real analysis. Cambridge University Press, 2000.
- 3. Rudin, Walter. Real and complex analysis, Mcgraw-hill international editions: Mathematics series, 1987.
- 4. Axler, Sheldon. Measure, integration & real analysis. Springer Nature, 2020.
- 5. Widder, David V. Advanced calculus. Courier Corporation, 2012.
- 6. Franklin, Philip. *A treatise on advanced calculus*. Courier Dover Publications, 2016.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Equivalence of paths, change of parameter. (*Text 1, Chapter 6 Section* 6.12)
- Linear Space of functions.
- Absolutely continuous functions and Bounded variation.
- Uniform Lipschitz condition and bounded variation.
- Prime numbers and Riemann zeta function.
- Riemann Stieljes integration of Cantor sets
- > Weak form of Lebesgue's dominated convergence theorem.
- Helly's Selection Theorem.
- Space Filling Curves.
- > The algebraic completeness of complex field.
- > The exponential and logarithmic functions.
- ➤ The trigonometric functions.
- Algebra and its Uniform closure
- Stone's generalization of the Weierstrass theorem (Theorem)
- ➢ Fourier series.
- Gamma Functions.

Discipline Specific Elective – DSE

Graph Theory

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme			B Sc Ma	thematics			
Course Name			Graph	Theory			
Type of Course	1	Discipli	ne Speci	fic Electiv	re – DSI	£	
Course Code	M24MT7DCE402						
Course Level	MA			100			
Course Summar y	This course provides a comprehensive introduction to graph theory, equipping students with the knowledge and skills to analyse and solve problems in diverse fields like computer science, biology, chemistry, sociology, operations research etc.						
Semester	7	Credits				4	
Course Details	Learning Approac	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k	
Drac	h	4	0	0	0	4	
requisites,If any	Fundamental	ls of Sets a	and Relatio	ns			

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		

1	Understand basic concepts and properties of graphs.	U	1,2,5,6		
2	Analyse real world problems using graph theory	An	1,2,3,4		
3	Understand the theoretical approach of graph theory	U	1,2,3,4,5		
4	Identify research problems relating to graph theory	Ι	1,2,3,4,5		
5	Visualize graphs using different software.	S	1,2,3,4		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill(S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

ANASIUS

Module	Units	Course Description	CO No:	Hours	
	1.1	Introduction, Basic concepts, Subgraphs, Degrees of vertices.	1		
1	1.2	3			
	1.3	Operations on graphs.	3	15	
	1.4	Directed Graphs: Introduction, basic concepts.	3		
	1.5	3			
	Text 1: Chapt 2.3	er 1 – Sections: 1.1 to 1.5, 1.8; Chapter 2	– Sections:	2.1 to	
	2.1	Connectivity: Introduction, Vertex cutsand edge cuts	1, 3		
2	2.2	Connectivity and edge connectivity.	3	15	
2	2.3	Blocks.	1		
	Text 1: Chapter 1 – Sections: 3.1 to 3.3, 3.4.1 & 3.4.2				
	3.1	Trees: Introduction, Definition, characterization and simple properties.	1, 3		

	3.2	Centres and Centroids.	1, 3				
2	3.3	Independent Sets.	1, 2	15			
3	3.4	Eulerian and Hamiltonian Graphs:Introduction, Eulerian graphs.	1, 2, 3				
	3.5	Hamiltonian Graphs, Closure of graphs.	1, 2, 3				
	Text 1: Chapter	4 – Sections: 4.1 to 4.3; Chapter 5 – Sec	ctions: 5.1,	5.2;			
	Chapter 6 – sec	tions: 6.1 to 6.3					
	4.1	Graph Colorings: Introduction, VertexColoring.	1, 2, 3, 4				
4	4.2	Planarity: Introduction, Planar andNonplanar Graphs.	1, 2, 3	15			
	4.3	Euler Formula and its consequences, K5 and K3, 3 are Non-planar Graphs.	2, 3				
	Text 1: Chapter	• 7 – Sections: 7.1 to 7.2.5; Chapter 8 – 5	Sections: 8.	1 to 8.4			
		Teacher Specific Contents					
5	(This can be either classroom teaching, practical session, field visit etc. asspecified by the teacher concerned)						
		This content will be evaluated intern	ally				

Teaching and Learning Approach		Classroom Procedure (Mode of tra	ansaction)		
		Direct Instruction, Brain Storming Approach, Interactive instruction, Group Discussion, Presentation by individual student/ group representatives.			
		MODE OF ASSESSMEN	Т		
	А	Continuous Comprehensive Assessment (CCA)			
		Components	Mark Distribution		
		Teacher Specific Content	20 Marks		
		Quiz in any mode	5 Marks		
		Assignment	5 Marks		

Aggagement	В	Semester End Examination (Written)					
Assessment Types		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]					
			Part A	Part B	Part C	Total	
		Module	2 Marks	5 Marks	10 Marks		
		Ι	3	2	1	6	
		II	3	3	1	7	
		III	3	2	1	6	
		IV	3	2	1	6	
	1	Total no of questions	12	9	4	25	
	5	Number of questions to be answered	10	6	2	18	
		Total Marks	20	30	20	70	

TEXT BOOK:

1. Balakrishnan, R., and Ranganathan, K. A *Textbook of Graph Theory*. Secondedition, Germany Springer New York, 2012.

SUGGESTED READINGS:

- 1. Chartrand, Gary, and Zhang, Ping. *Chromatic Graph Theory*. United States, CRCPress, 2019.
- 2. Clark, John, and Derek Allan Holton. *A First Look at Graph Theory*. World ScientificPublishing Company, 1991.
- Rosen, Kenneth H. Discrete Mathematics and Its Applications. UnitedStates, McGraw-Hill Higher Education -, 2016.
- 4. West, Douglas Brent. *Introduction to Graph Theory*. United Kingdom, Pearson, 2018.
- 5. Wilson, Robin J. *Introduction to Graph Theory* UPDF EBook. UnitedKingdom, Pearson Education, 2015.

ADVANCED READINGS:

- 1. Bondy, John Adrian, and Murty, U. S. R. *Graph Theory with Applications*. UnitedKingdom, Macmillan, 1976.
- 2. Hsu, Lih-Hsing, and Lin, Cheng-Kuan. *Graph Theory and InterconnectionNetworks*. United States, CRC Press, 2008.
- 3. Haynes, Teresa W., et al. Fundamentals of Domination in

Graphs. UnitedStates, CRC Press, 2013.

- 4. Biggs, Norman. *Algebraic Graph Theory*. United Kingdom, Cambridge UniversityPress, 1993.
- 5. Kottarathil, Jomon, et al. *Graph Theory and Decomposition*. CRC Press, Boca Raton, USA, 2024.
- 6. Li, Xueliang, et al. Graph Energy. United States, Springer New York, 2012.
- 7. Bapat, Ravindra B. Graphs and Matrices. India, Springer London, 2014.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- An application to Chemistry (Section 1.10),
- An application to Social Psychology (Section 1.11),
- Proof of theorem 2.3.2
- ➤ Counting the number of Spanning Trees (Section 4.4),
- Cayley's Formula (Section 4.5),
- > Applications: The Connector Problem (Section 4.7.1),
- Kruskal's Algorithm
- Edge Coloring (Section 7.6)
- The Four-Color Theorem and the Heawood Five-Color Theorem (Section 8.6)
- Spectral Properties of Graphs: Chapter 11
- Visualize graphs using software like Sage Math, Python, or Wolfram Mathematica

Semester 8

CourseCode	Title of	Type of the Course	Credit	Hours/
	the Course			Week
M24MT8DCC400	Functional Analysis	Discipline Capstone Component(Advanced) - DCC	4	5
M24MT8DCC401	Measure Theory and Integration	Discipline Capstone Component(Advanced) - DCC	4	5
M24MT8DCE400	Basic Topology	Discipline Capstone Component(Advanced) - DCC	4	5
M24MT8DCE401	Field Theory	Discipline Capstone Component(Advanced) - DCC	4	5
M24MT8DCE402	Optimization Techniques	Discipline Capstone Component(Advanced) - DCC	4	5

	Mar Athana	asius Co FY	llege (Au 7UGP S	tonomous SYLLABU), Kotha S	amangalam
Programme			B Sc Ma	thematics		
Course Name			Functiona	al Analysis		
Type of Course	Dis	scipline Ca	apstone Co D	omponent (A CC	dvanced	l) —
Course Code	1=	MANAS	M24MT	8DCC400		
Course Level		Ý 🗕	- 4	00		
Course Summar y	This is a concepts which Functional A linear operate chapters delve different strue progress from more special properties, re- product space most importa- which is an e- that a normed concepts and skill and intui	mprehensi ch facilita nalysis. It ors, inner e into the ctures, lik n normed ized space elationship es. The co nt theorer extension t l space is problems tion in Fur	ve curricul te betwee covers v product se propertie e norms a spaces, li es like H s and sp urse ends n connecto heorem fo richly sup are intend nctional An	lum on vect n Linear A arious aspec spaces and s of vector and inner pr near operato libert space ecific identi with Hahn- ed with bou r linear func pplied with 1 ted to help t nalysis and it	or space lgebra a cts of no Hilbert s spaces e roducts. ors and f es, empli- ties rela Banach nded line tionals a inear fur he stude s applica	s and related nd Advanced ormed spaces, spaces. These equipped with The concepts functionals to nasizing their ted to inner Theorem, the ear operators, nd guarantees nctionals. The nt to develop tions.
Semester	8		Credi ts			5
Course Details	Learnin g	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k
	Approac h	3	0	2	0	5
Pre- requisites, If any	Ordinary Calo spaces,Linear	culus, Met Algebra c	ric spaces, of finite din	Cauchy sequences of the	iences, C ctor space	omplete es.

Discipline Capstone Component (Advanced) - DCCFunctional Analysis

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domain s	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Analyse the additional characteristics and properties exhibited by normed spaces and comprehend how these properties influence the behaviour of elements within these spaces.	An	1,2,3,4
2	Analyse the behaviour and properties of linear operators and functionals in various spaces.	An	1,2,3,6
3	Evaluate the structure and properties of Inner product spaces and Hilbert spaces, emphasizing completeness and orthogonality.	Е	1,2,3,4,5,6
4	Understand the concept of the orthogonal complements and direct sum in relation to Inner Product spaces. Analyse the representation of functionals on HibertSpaces and Hilbert Adjoint Operators	U, An	1,2,3,4
5	Understand Hahn - Banach Theorem, the most important theorem in connection with bounded linear operators and its generalisation to Complex Vector spaces and normed spaces.	U	1,2,3,4,5
*Reme	mber (K), Understand (U), Apply (A), Analyse (A Create (C),Skill (S), Interest (I) and	n), Evaluate l Appreciatio	e (E), on (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Vector space	1	
	1.2	Normed spaces, Banach spaces	1	
1	1.3	Further properties of normed spaces. (Proof of Completion theorem (2.3-2) excluded)	1	20
1	1.4	Finite dimensional normed spaces and subspaces	1	-
	1.5	Compactness and finite dimension.	1	
	10	Problems of all sections (Practicum)	1	
	Text 1: Ch	apter 2 - Sections: 2.1 to 2.5	L	1
	2.1	Linear operators.	2	
	2.2	Bounded and continuous linear operators.	1, 2	
	2.3	Linear functionals (Algebraic dual, second algebraic dual and algebraic reflexivity areexcluded)	2	18
2	2.4	Linear operators and functionals on finite dimensional spaces (Proof of theorem 2.9-3excluded)	2	10
	2.5	Normed space of operators, Dual spaces.	2	
		Problems of all Sections (Practicum)	1, 2	
	Text 1: Ch	apter 2 - sections: 2.6, 2.7, 2.8.1 to 2.8.8, 2	.9 & 2.10	
	3.1	Inner product spaces, Hilbert spaces.	3	20
3	3.2	Further properties of inner product spaces.(Proof of Completion theorem (3.2-3) excluded)	3	
	3.3	Orthogonal complements	4	

		3.4	Direct sums		4	
		3.5	Orthonormal sets and sequences		4, 5	
		3.6	Series related to orthonormal seque andsets (Example 3.5-1 excluded)	ences	4,5	
		3.7	Total orthonormal sets and sequences(Proof of theorem 3.6- 5 excluded)		4,5	
			Problems of 3.1, 3.2 & 3.3 (Practi	icum)	3, 4, 5	
		Text 1: Cl	hapter 3 - Sections: 3.1 to 3.6			
	4.1	Representa HilbertSpa representa excluded)	ation of Functionals on aces. (Proof of Riesz tion theorem (3.8-4)	4	17	
	4.2	Hilbert-ad	joint operator.	4		
4	4.3	Self-Adjoi NormalOp	nt, Unitary and perators.	5		
	4.4	Zorn's lem	ıma.	5		
	4.5	Hahn-Bana	ach Theorem.	5		
	4.6	Hahn-Bana VectorSpa	ach Theorem for Complex ces and Normed Spaces	5		
		Practicum	n (Problems) 4	, 5		
	Text 1: Ch 4.3	napter 3 - S	ections: 3.8 to 3.10; Chapter 4 - So	ections	s: 4.1 to)
			Teacher Specific Contents	a		
5	(This ca	n be either o	classroom teaching, practical session	n, field	visit	
		This c	ontent will be evaluated internally	,		
<u> </u>	l		-			

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and to develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching andLearning Approach	Le	Classi ecture methods, Pro BasedTutorials/ Pr	coom Proced transacti oblem Solving actical, Softw	ure (Mode on) g Methodolo are Based V	of ogies, Activity Visualisation	y of
		MO	DE OF ASS	ESSMENT		
	А	Contin	uous Compr (C	ehensive A CA)	ssessment	
		Со	mponents		Mark Distributi	on
		Teacher	Specific Conte	ent	20 M	arks
		Quiz	in any mode		5 Ma	arks
	2-	As	signment	-	5 Ma	arks
	B	Sem	ester End Ex	xamination	(Written)	
Assessment Types		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]				
		Module	Part A 2 Marks	Part B 5 Marks	Part C 10 Marks	Total
		I	3	2	1	6
	1		3	3	1	7
		Ш	3	2	1	6
		IV	3	2	1	6
		Total no of questions	12	9	4	25
		Number of questions to be answered	10	6	2	18
		Total Marks	20	30	20	70

TEXT BOOK:

1. Erwin Kreyszig, *Introductory Functional Analysis with Applications*, WileyInternational publication. 1978 (Reprint 2007)

SUGGESTED READINGS:

- 1. Limaye, B V. *Functional Analysis*. New Age International (P) LTD, New Delhi,2004.
- 2. Simmons, G F. Introduction to Topology and Modern Analysis, Mc Graw-Hill, NewYork, 1963.
- 3. Siddiqi, A H. *Functional Analysis with Applications*, Tata Mc Graw-Hill, New Delhi, 1989.
- 4. Walter Rudin. *Functional Analysis, Second Edition*, International Series in Pure & Applied Mathematics, Tata Mc Graw Hill, 1973.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Example 2.2-7
- Proof of completion theorem 2.3-2
- Canonical mapping and algebraic reflexivity (2.8)
- Example 3.1-5
- Proof of Completion theorem 3.2-3
- Example 3.5.1
- Proof of theorem 3.6-5
- Legendre, Hermite and Laguerre Polynomials (3.7)
- Proof of Riesz representation theorem 3.8-4
- Application to Bounded Linear Functionals on C[a,b] (4.4)

Discipline Capstone Component (Advanced) – DCC

Measure Theory and Integration

٦

Г

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS
Programme	B Sc Mathematics
Course Name	Measure Theory and Integration
Type of Course	Discipline Capstone Component (Advanced) – DCC
Course Code	M24MT8DCC401
Course Level	400
Course Summary	This course provides a comprehensive exploration of measure theory and integration, with a primary focus on the development and applications of the Lebesgue measure and integral. The syllabus covers fundamental concepts such as Lebesgue outer measure, sigma algebra of Lebesgue measurable sets, outer and inner approximation techniques, countable additivity, and the Borel-Cantelli Lemma. Students will delve into non-measurable sets, including the Canter set and Canter Lebesgue function. The second part of the course introduces Lebesgue measurable functions and their integration. Topics include Lebesgue integration for sums, products, and compositions of functions, sequential pointwise limits, and simple approximations. Classical theorems, including Littlewood's three principles, Egoroff's theorem, and Lusin's theorem, are presented without proof to provide a practical understanding of theirapplications.
	Riemann and Lebesgue integrals. Students will learn to calculate the Lebesgue integral of bounded measurable functions over sets of finite measure, as well as explore the integral for measurable non-negative

	functions. T	he Genera	l Lebesgue	e Integral is	introduce	ed along with
	discussions	on counta	ble additiv	vity and cor	ntinuity o	of integration.
	The					
	course also the differenti	address ation of ind	ses the definite int	integration egrals.	of de	rivatives and
	The latter pa	art of the	course ext	ends the stud	dy to ger	neral measure
	spaces. Stude	ents will ex	xplore prop	erties and co	nstruction	ns of measures
	and measu	rable set	s. Signed	measures,	Hahn	and Jordan
	decompositio	ons, and th	ne Caratheo	odory Measu	re induce	d by an outer
	measure are	discussed.	The constr	ruction of out	er measu	res is covered,
	leading to ac	lvanced th	eorems suc	ch as the Rad	lon-Nikoo	lym Theorem,
	Lebesgue De	compositio	on Theoren	n, and Radon-	Nikodym	Derivative.
	The course c	oncludes y	with a gene	ralization of	measura	hility concepts
	for function	s on gen	eral measu	rable spaces	Studen	ts will study
	integration of	ver gener	al measure	spaces, utili	izing the	Caratheodory
	construction	of measu	re. The co	onstruction o	f produc	t measures is
	introduced, a	nd classic	theorems o	f Fubini and '	Tonelli ar	e proven.
	Des the set	CONLEL C des	OF IS PO			1
	By the end	of the c	ourse, stu	dents will h	ave a co	omprenensive
	understandin	g of meas	ure theory	and integration	on, with	the ability to
	apply these	concepts	in both	Lebesgue a	and gene	alutical toola
	spaces. The o	course ann	is to equip	students wi	th the an	alytical tools
	for advanced	mathemat	ical applica	tions and rea	aarah	
	for advanced	mathemat	ical applica	ations and res	earch.	
Semester	8		Credits	l		4
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week
	Approach	3	0	2	0	5
Pre- requisites, If any	Fundamental	s of Mathe	ematical Ar	alysis		

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, the studentwill be able to		
1	Acquire a deep understanding of the principles behind the Lebesgue measure, including its introduction, outer measure, and the sigma algebra associated with Lebesgue measurable sets	U	1

2	Master the principles of countable additivity and continuity, fundamental for Lebesgue measure theory through theoretical understanding and practical applications,	А	1,2,3
3	Recognize and analyze non-measurable sets, including specific examples like the Cantor set, and comprehend theimplications of their existence	Е	1
4	Develop proficiency in integrating functions within the Lebesgue framework, including the Riemann integral, Lebesgue integral of bounded and non- negative measurable functions, and the General Lebesgue Integral.	С	1,2,6
5	Proficient in utilizing the Caratheodory construction of measure, allowing them to construct product measures and prove classic theorems such as Fubini and Tonelli in the context of general measure spaces.	U, S	1,5,6
*Remer	nber (K), Understand (U), Apply (A), Analyse (An), Eve (C), Skill (S), Interest (I) and Appreciation	aluate (E), a (Ap)	Create

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Lebesgue Measure		
	1.1	Introduction	1	20
	1.2	Lebesgue outer measure	1	
	1.3	The \Box algebra of Lebesgue measurable sets	1	

	1.4	Outer and inner approximation of Lebesguemeasurable sets	1	
	1.5	Countable additivity, continuity and Borel-Cantelli Lemma	1, 2	
		Practicum (Problems)		
	Text 1: C	Chapter 2 - Sections: 2.1 to 2.5		
2		Measurable Functions		
	2.1	Non measurable set	2, 3	
	2.2	The Cantor set and Cantor Lebesgue function	2, 3	
	2.3	Lebesgue Measurable Functions: Sums,products and compositions	3	17
	2.4	Sequential pointwise limits and simple approximation	3	
	2.5	Littlewood's three principles, Egoroff's theorem, and Lusin's theorem (All theorems without proof)	3	
		Problems (Practicum)	2,3	-
	Text 1: C	Problems (Practicum) Chapter 2 - Sections: 2.6 to 2.7, 3.1 to 3.3	2,3	1
3	Text 1: C	Problems (Practicum) Chapter 2 - Sections: 2.6 to 2.7, 3.1 to 3.3 Lebesgue Integration	2,3	-
3	Text 1: C 3.1	Problems (Practicum) Chapter 2 - Sections: 2.6 to 2.7, 3.1 to 3.3 Lebesgue Integration The Riemann Integral	2,3	-
3	Text 1: C 3.1 3.2	Problems (Practicum) Chapter 2 - Sections: 2.6 to 2.7, 3.1 to 3.3 Lebesgue Integration The Riemann Integral The Lebesgue integral of a bounded measurable function over a set of finitemeasure	2,3	-
3	Text 1: C 3.1 3.2 3.3	Problems (Practicum)Chapter 2 - Sections: 2.6 to 2.7, 3.1 to 3.3Lebesgue IntegrationThe Riemann IntegralThe Lebesgue integral of a bounded measurable function over a set of finitemeasureThe Lebesgue integral of a measurable non negative function	2,3	20
3	Text 1: C 3.1 3.2 3.3 3.4	Problems (Practicum)Chapter 2 - Sections: 2.6 to 2.7, 3.1 to 3.3Lebesgue IntegrationThe Riemann IntegralThe Lebesgue integral of a bounded measurable function over a set of finitemeasureThe Lebesgue integral of a measurable non negative functionThe General Lebesgue Integral.	2,3	20
3	Text 1: C 3.1 3.2 3.3 3.4 3.5	Problems (Practicum)Chapter 2 - Sections: 2.6 to 2.7, 3.1 to 3.3Lebesgue IntegrationThe Riemann IntegralThe Lebesgue integral of a bounded measurable function over a set of finitemeasureThe Lebesgue integral of a measurable non negative functionThe General Lebesgue Integral.Countable Additivity and Continuity ofIntegration	2,3 4 4 4 4 4 4 4	20
3	Text 1: C 3.1 3.2 3.3 3.4 3.5 3.6	Problems (Practicum)Chapter 2 - Sections: 2.6 to 2.7, 3.1 to 3.3Lebesgue IntegrationThe Riemann IntegralThe Lebesgue integral of a bounded measurable function over a set of finitemeasureThe Lebesgue integral of a measurable non negative functionThe General Lebesgue Integral.Countable Additivity and Continuity ofIntegrationIntegrating Derivatives: DifferentiatingIndefinite Integrals	2,3 4 4 4 4 4 4 4	20

4		General Measure spaces: Their propertiesand construction					
	4.1	Measures and Measurable Sets (Theorems without proof)	5				
	4.2	Signed Measures: The Hahn and JordanDecompositions	5	18			
	4.3	The Caratheodory Measure Induced by anOuter Measure (Propositions 5,6 and 7 Statement only)	5				
	4.4	The Construction of Outer Measures	5				
	4.5	The Radon-Nikodym Theorem (without proof), The Lebesgue Decomposition Theoremand Radon-Nikodym Derivative	5				
		Problems (Practicum)	5				
	Text 2: C	hapter 17 - Sections: 17.1 to 17.4; Chapter 18	- Section: 1	8.4			
5	Teacher Specific Contents (This can be either classroom teaching, practical session, field visitetc. as specified by the teacher concerned)						
	This content will be evaluated internally						

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills. The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)										
Approach	Lecture and Tutorial										
		MC	DE OF ASS	SESSMENT							
	Α	Continuou	s Comprehe	ensive Asses	sment (CC	A)					
		Components			Mark Distribution						
		Teacher S	Specific Cont	ent	201	Marks					
		Quiz i	in any mode		5 N	Aarks					
		As	5 Marks								
	В	Semester End Examination (Written)									
Assessment	1	Maximum	Question	n Pattern	m Morks 7	01					
Types		Module	16	16	16	1		Dort A	Port B	Part C	0]
			2 Marks	5 Marks	10	Total					
					Marks						
		Philane	3	2	1	6					
		ILEDO	3	3	1	7					
		III	3	2	1	6					
	1	IV	3	2	1	6					
		Total no of questions	12	9	4	25					
		Number of questions to be answered	10	6	2	18					
		Total Marks	20	30	20	70					

TEXT BOOK:

1. Royden, H. L., Fitzpatrick, P.M. Real Analysis Fourth Edition, PearsonEducation, 2010.

SUGGESTED READINGS:

- Barra, G. de. *Measure Theory and integration*, New Age International (P) Ltd., NewDelhi, 1981 (Reprint 2003)
- 2. Halmos, P.R. Measure Theory, D. van Nostrand Co., 1974

3. Jain, P.K., and Gupta, V.P. *Lebesgue Measure and Integration*, New Age International

(P) Ltd., New Delhi, 1986 (Reprint 2000).

4. Bartle, R.G., *The Elements of Integration*, John Wiley & Sons, Inc New York, 1966.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Generalize the concepts of measurability of functions on general measurable spaces.
- > Study the integration over general measure spaces
- Using Caratheodory construction of measure, construct product measures and prove he classic theorems of Fubini and Tonelli
- Prove the Radon-Nikodym Theorem

Discipline Specific Elective – DSE

Basic Topology

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme		B Sc Mathematics					
Course Name		Basic Topology					
Type of Course	1-	Discipline Specific Elective – DSE					
Course Code		AHANA	M24M7	F8DCE400			
Course Level		MA		400			
Course Summary	Course intrinc inc axioms	roduces j ludingCon	properties npactness,	of topolog Connectedne	gical spa ss and Se	aces, paration	
Semester	8	Credits	121	. 51		4	
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week	
Pre- requisites,If any	Approach Fundamenta	3 ls of Analy	0 vsis and Ba	2 asics of Metri	0 ic spaces.	5	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:
	Upon the successful completion of the course, thestudent will be able to		
1	Define and illustrate the concept of subspace and closed sets of a topological space	K, U, S, Ap	1, 2, 3, 5

2	Describe the concept of neighbourhoods and interior point of a point in a topological space	U, I, Ap	1, 2, 3, 4
3	Prove a selection of theorems concerning topological spaces, continuous functions, and quotient topologies.	U, An, Ap	1,2, 4
4	Define and illustrate the concepts of compact andLindeloff Space and their properties	K, U, S, An, S, I, Ap	1,2,4
5	Define connectedness, separation axioms, andprove related theorems	K, U, S, An, S, I, Ap	2,3, 4, 6

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours			
1	1.1	Definition and related concepts. Examples of topological spaces (Practicum)	1				
	1.2	Bases and subbases	1				
	1.3	Subspaces	1	20			
	1.4	Closed Sets and Closure	1				
		Problems (Practicum)	1				
	Text 1:	Chapter 4 – Sections: 1, 2, 3 (3.1 to 3.9), 4; Chap	pter 5 – Sec	ction: 1			
2	2.1	Neighbourhoods, Interior and Accumulation points	2				
	2.2	Continuity. Related concepts (Practicum)	3	20			
		Problems (Practicum)	2,3				
	Text 1: Chapter 5 – Sections: 2 (2.1 to 2.10 and 2.13) & 3 (3.1 to 3.10)						
3	3.1	Making functions continuous and Quotient Spaces	3				
	3.2	Smallness condition on a Space	4	15			

		Problems (Practicum)	3,4					
	Text 1: Chapter 5 – Sections: 4 (4.1 to 4.12); Chapter 6 – Section 1(1.1 to 1.11)							
4	4.1	Connectedness	5	20				
	4.2	Path Connectedness (Practicum)	5					
	4.3	Separation axioms	5					
		Practicum (Problems)	5					
	Text 1: Chapter 6 – Sections: 2 & 3 (3.6 to 3.8); Chapter 7 – Section: 1							
5	Teacher Specific Contents(This can be either classroom teaching, practical session, field visitetc. asspecified by the teacher concerned)This content will be evaluated internally							

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

Its purpose is to encourage creativity and develop problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved and a handwritten copy of the solutions should be kept in the department.

Teaching and	Classroom Procedure (Mode of transaction)						
Approach	Chalk and talk, Group discussion, Seminar, Interactive sessions, Tutorials, Assignment, Quiz						
		M	ODE OF AS	SSESSMEN	T		
	Α	A Continuous Comprehensive Assessment (CCA)					
Assessment Types		Co	omponents		Mar Distribu	'k ution	
		Teacher Specific Content			20 Ma	ırks	
		Quiz	in any mod	le	5 Mai	rks	
	17	Assignment				5 Marks	
		[Maxim	Quest um Time 2	ion Pattern Hour <mark>s</mark> , May 70]	kimum Mark	s	
		Module	Part A	Part B 5	Part C 10	Total	
		NOWLEDG	Marks	Marks	Marks		
		Ι	3	2	1	6	
	1	П	3	3	1	7	
		III	3	2	1	6	
		IV	3	2	1	6	
		Total no of question s	12	9	4	25	
		Number of questions to be answered	10	6	2	18	
		Total Marks	20	30	20	70	

TEXT BOOK:

1. K. D. Joshi. *Introduction to General Topology*, Third Edition, New AgeInternational(P) Ltd, 2023.

SUGGESTED READINGS:

- Munkres J.R, *Topology-A First Course*, Prentice Hall of India (P). Ltd., New Delhi,2000.
- 2. Willard, Stephen. General Topology, Addison-Wesley, 2004.
- 3. George F Simmons, *Introduction to Topology and Modern Analysis*, McGraw-HillBook Company, 1963.

ADVANCED READINGS:

- 1. Dugundji. Topology, Universal Book Stall, New Delhi, 1989.
- 2. J. Arthur Seebach, Lynn Arthur Steen, Counter Examples in

Topology, DoverPublications, 1995

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Study the concept of nearness relation on a set and the one-to-one correspondence between set of topologies on a set and the set of nearness relation on that set.
- Study the concept of embedding problem, extension problem and lifting problem.
- > Study the concept of identification space and identification maps.
- Study the concept of local connectedness.

Discipline Specific Elective – DSE

	1						
	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS						
Programme			B Sc Ma	thematics			
Course Name			Field '	Theory			
Type of Course	-	Discipline Specific Elective – DSE					
Course Code		M24MT8DCE401					
Course Level	MAK		4	00			
Course Summar y	The objectiv first module polynomials fields, finite of fields, spl theoryetc. ar	The objective of the course is to learn more about field theory. The first module covers topics on ring of polynomials, factorization of polynomials etc. The second module covers concepts on extension fields, finite fields etc. The third module includes automorphisms of fields, splitting fields etc. Topics on separable extensions, Galois theoryetc. are covered in the fourth module.					
Semester	8	Credits				4	
Course Details	Learning Approac h	Lectur e	Tutoria 1	Practicu m	Other s	Total Hours/wee k	
Pre- requisites, If any	Concepts from Theoryof Gro	n Fundamoups and R	entals of G	z roups and R	ings and	5 Advanced	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:		
	Upon the successful completion of the course, thestudent will be able to				
1	Explain ring of polynomials, master polynomial factorization, and comprehend the ideal structure in $F[x]$.	An	1,2,3,4,5,6		
2	Comprehend the concept of extension, distinguish the various types of extensions and analyse finite fields.	An	1,5,6		
3	Examine field automorphisms, categorize splitting fields and apply the isomorphism extension theorem.	A	1,2,3,6		
4	Analyse separable extensions and understand the Galois theorems.	Е	1		
5	Analyse constructible numbers and understand theconcepts of UFD, PID and Euclidean Domains	An	2,3		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Rings of polynomials, The evaluationhomomorphisms	1	
	1.2	Factorization of polynomials over a field, Thedivision algorithm in F[x]	1	
1	1.3	Irreducible polynomials, Uniqueness offactorization in F[x]	1	15
	1.4	Ideal Structure in $F[x]$, Application to uniquefactorization in $F[x]$	1	
		Practicum (Problems)		
	Text 1: S	ections: 27, 28 & 31 (31.21 to 31.27)	1	1

	2.1	Introduction to Extension fields, Algebraic andtranscendental elements, The irreducible polynomial for α over F	2				
	2.2	Simple extensions	2	20			
2	2.3	Algebraic extensions, Algebraically closed fields and algebraic closures	2				
	2.4	Finite fields, The existence of GF(p ⁿ)	2				
		Practicum (Problems)					
	Text 1:	Sections: 39, 40 (40.1 to 40.18) & 42		1			
	3.1	Introduction to Galois theory	3				
	3.2	Conjugation isomorphism	3	20			
3	3.3	Splitting fields, The isomorphism extension theorem	3				
	3.4	Properties of splitting fields	3				
		Practicum (Problems)					
	Text 1:	Sections: 43, 44 (44.1 to 44.4, 44.5 (Statement onl	y) & 44.6	to 44.15)			
	4.1	Separable extensions, Characteristic p	4				
	4.2	Counting Automorphisms, The primitiveelement theorem	4				
4	4.3	Normal extensions	4	20			
	4.4	Galois Theory, The Galois theorems	4				
		Practicum (Problems)					
	Text 1: Sections 45 & 46						
<u> </u>		Teacher Specific Contents					
5	(This ca	n be either classroom teaching, practical session, fie	eld visit				
	etc. assp	This content will be evaluated interna	lly				

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Total no of questions	12	9	4	25
Number of questions to be answered	10	6	2	18
Total Marks	20	30	20	70

TEXT BOOK:

1. Fraleigh, John B., and Neal E. Brand. A First Course in Abstract Algebra 8th ed,Pearson Education, 2021.

SUGGESTED READINGS:

- 1. Dummit, David S., and Richard M. Foote. *Abstract Algebra. 3rd ed.* Wiley, 2003.
- 2. Artin, M. Algebra. 2nd ed., Pearson Education, 2017
- 3. Herstein, I. N. Topics in Algebra, 2nd Edition., John Wiley and Sons, 2010
- 4. Gallian, Joseph A, Contemporary Abstract Algebra, 10th edition, Cengage 2021.
- 5. Musili, C. Introduction to Rings and Modules, 2nd revised Edition, Narosa, 1997.

ADVANCED READINGS:

- 1. Hungerford, Thomas.W., Algebra, 4th Print 2003 Edition.
- 2. Lang, Serge, Algebra, 4th Print 2005 Edition

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

Unique Factorization Domains, Euclidean Domains ; Understanding the concepts of Unique Factorization Domain, Principal Ideal Domain, Euclidean Domain and analysing the relationships among the three.

(Text 1: Sections 34, 35)

Geometric Constructions ; Gaining a basic knowledge of constructible numbers and illustrates the impossibility of certain constructions (Doubling the cube, squaring the circle, trisecting the angle) (Text 1: Sections

Discipline Specific Elective – DSE

Г

Optimization Techniques

	Mar Athanasius College (Autonomous), Kothamangalam FYUGP SYLLABUS					
Programme	B Sc Mathematics					
Course Name	Optimization Techniques					
Type of Course	Discipline Specific Elective – DSE					
Course Code	M24MT8DCE402					
Course Level	400					
Course Summar y	This Mathematics undergraduate course investigates linear programming methods, including simplex techniques and duality theorems. It explores challenges related to Integer Linear Programming (ILP) and Mixed Integer Linear Programming (MILP), utilizing cutting-edge approaches like cutting planes and branch-and-bound methods. The curriculum also includes fundamental concepts in graph theory, such as minimum path and spanning trees, as well as sequential activity scheduling and maximum flow problems. Furthermore, the course provides an introduction to Unconstrained Optimization, utilizing tools like Taylor's series, Fibonacci, and Golden Section searches. Constrained Optimization is also covered, incorporating topics such as gradient projection and Lagrange multipliers.					
Semester	8	Credits 4		4		
Course Details	Learning Approac	Lectur e	Tutoria l	Practicu m	Other s	Total Hours/wee k
D	h	3	0	2	0	5
Pre- requisites, If any	Linear Programi solution	ming Prol	olem, Forr	nation of an	LPP. O	ptimal

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PSO No:	
	Upon the successful completion of the course, the studentwill be able to			
1	Apply graphical method to solve LP problems, mastering simplex tableau and duality principles for solving LP problems.	А	1, 2	
2	Students master ILP, MILP problems, cutting plane, and Branch-and-Bound methods, enhancing problem- solving and optimization skills	An	1, 2	
3	Analyze graphs, solve minimum path and spanning tree problems, and optimize sequential activities with maximum flow.	An	1, 2	
4	Find the solution of unconstrained optimization problems using Taylor's series, Fibonacci, Golden Section, and Hooke-Jeeves methods.	E	1,2, 3	
5	Find the solution of constrained optimization problems using gradient projection, Lagrange multipliers, and constrained derivatives techniques.	Е	1, 2, 3	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Module	Units	Course Description	CO NO:	Hours		
1		Linear Programming				
	1.1	LP in two-dimensional space and problems, Statement of General LP problems, Definitions of FS, BS, BFS and OS, Simplex tableau and problems.	1	20		
	1.2	Definition of Artificial Variable and Big-M Method, Meaning of Degeneracy in LP Problems	1			
	1.3	Duality in LP Problems, Duality Theorems (statementsonly), Dual Simplex Method	1			
		Problems (Practicum)	1			
	Text 1: Chapter 3 – Sections: 3.2, 3.3, Definitions in Sections 3.4 to 3.7,					
	3.14, 3.17, 3.18 & 3.20					

2		Integer Programming		
	2.1	General ILP and MILP Problem	2	15
	2.2	Cutting Plane Method	2	
	2.3	Branch and Bound Method	2	
		Problems (Practicum)	2	
	Text 1:	Chapter 6 – Sections: 6.3, 6.5, 6.6 & 6.8		
3		Flow in Networks		
	3.1	Graphs: Definition and Notations	3	
	3.2	Minimum Path Problem, Spanning Tree of MinimumLength.	3	15
	3.3	Scheduling of Sequential Activities, Maximum FlowProblem.	3	
		Problems (Practicum)	3	-
	Text 1:	Chapter 5 – Sections: 5.2 to 5.7		<u> </u>
4		Non Linear Programming		
	4.1	Taylor's Series Expansions Necessary and SufficientCondition	4	-
	4.2	Fibonacci and Golden Section Search	4	-
	4.3	Hooke and Jeeves Search	4	25
	4.4	Gradient Projection	5	-
	4.5	Lagrange Multipliers	5	-
	4.6	Equality Constrained Optimization: ConstrainedDerivatives	5	
		Problems (Practicum)	4, 5	
	Text 1:	Chapter 11 – Sections: 11.2 to 11.7		<u>.</u>
5	Teacher Specific Contents			
---	--			
	(This can be either classroom teaching, practical session, field visit			
	etc. asspecified by the teacher concerned)			
	This content will be evaluated internally			

	Classroom Procedure (Mode of transaction)						
Teaching and Learning Approach	Direct Instruction: Explicit Teaching and E-learning. Interactive instruction: Engage in collaborative learning through active participation, seminars, group assignments, group discussions, and presentations by individual students orgroup representatives						
Assessment	MODE OF ASSESSMENT						
Types	A Continuous Comprehensive Assessment (CCA)						
	Components				Mark Distribution		
	Teacher Specific Content				20 Marks		
		Quiz in any mode			5 Marks		
		Assignment			5 Marks		
	B Semester End Examination (Written)						
	Question Pattern [Time 2 Hours, Maximum Marks 70]						
		Madula	Part A	Part B	Part C	Total	
		Module	2 Marks	5 Marks	10 Marks		
		Ι	3	2	1	6	
	-	II	3	3	1	7	
		III	3	2	1	6	
		IV	3	2	1	6	
		Total no of questions	12	9	4	25	
		Number of questions to beanswered	10	6	2	18	
		Total Marks	20	30	20	70	

TEXT BOOKS:

Γ

- 1. Mittal, K. V. and Mohan, C. Optimization Methods in Operations Research and Systems Analysis; 5th Edition, New Age Publishers, 2020.
- 2. Ravindran, Philips, Solberg. *Operations Research Principles and Practice*; 2nd Edition, Wiley India Publishers, 2012.

SUGGESTED READINGS:

- 1. Swarup, K. Gupta , P. K., and Man Mohan, *Operations Research*. S. Chand and SonsPublishers, 2010.
- 2. Sharma , S. D. *Operations Research Theory, Methods And Applications*; Kedar Nath Ram Nath Publishers, 2014.

ADVANCED READING:

1. Taha, A. H. Operations Research: An Introduction. Pearson Publishers, 2012.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Organize interactive discussions where students can explore the conceptual foundations of duality in linear programming. Encourage them to discuss real-world applications and implications of duality theorems. Challenge students to delve into the proofs of duality theorems. This can be done individually or in groups. They can present their understanding of the proofs to the class or in a written format.
- Challenge students to implement the Cutting Plane Method or Branch and Bound Method for solving optimization problems. They can use programming languages likePython or MATLAB or others. Encourage them to test their implementations on various problems and analyse the results.
- Demonstrate real-world applications of minimum spanning tree problems and flow in networks. This could include applications in logistics, telecommunications, project management, and network design.
- Assign small optimization problems where students can apply the Hooke and Jeeves Search method and Gradient Projection method. These problems could encompass scenarios in engineering, finance, or operations research.

Internship & Project

FYUGP-Mathematics

1. Internship: Students can earn a maximum of 2 credits (4th Semester)

The internship can be in the field of Mathematics/ Interdisciplinary field related to Mathematics (Example –Pure/Applied Mathematics, Applied Probability, Computer Science, Banking, Applied Economics etc.)

The student is expected to undergo training in a reputed organisation/ Institution/any other for a minimum period of 21 days and submit the final consolidated report along with the completion certificate from the organization at the end.

The student will be evaluated at the college level based on the reportsubmitted followed by presentation/viva.

2. Project and Comprehensive Viva -Voce: Students can earn a maximum of 12 credits (8th Semester)

a) The project work should be done under the supervision of a teacher of the concerned department.

- b) There will be an internal assessment and an external assessment for project work.
- c) Project work is evaluated based on the presentation of the student and viva voce on the project.

d) External evaluation of the project work will be done by one/two external examiners

from different colleges and one internal examiner from the concerned college.

e) The final external mark of the project will be calculated by taking the average of the marks given by the two external examiners and the internal examiner.